首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems.  相似文献   

2.
Organismal performance abilities occupy a central position in phenotypic evolution; they are determined by suites of interacting lower-level traits (e.g., morphology and physiology) and they are a primary focus of natural selection. The mechanisms by which higher levels of organismal performance are achieved during evolution are therefore fundamentally important for understanding correlated evolution in general and coadaptation in particular. Here we address correlated evolution of morphological, physiological, and behavioral characteristics that influence interspecific variation in sprint speed in a clade of lacertid lizards. Phylogenetic analyses using independent contrasts indicate that the evolution of high maximum sprinting abilities (measured on a photocell-timed racetrack) has occurred via the evolution of (1) longer hind limbs relative to body size, and (2) a higher physiologically optimum temperature for sprinting. For ectotherms, which experience variable body temperatures while active, sprinting abilities in nature depend on both maximum capacities and relative performance levels (i.e., percent of maximum) that can be attained. With respect to temperature effects, relative performance levels are determined by the interaction between thermal physiology and thermoregulatory behavior. Among the 13 species or subspecies of lizards in the present study, differences in the optimal temperature for sprinting (body temperature at which lizards run fastest) closely matched interspecific variation in median preferred body temperature (measured in a laboratory photothermal gradient), indicating correlated evolution of thermal physiology and thermal preferences. Variability of the preferred body temperatures maintained by each species is, across species, negatively correlated with the thermal-performance breadth (range of body temperatures over which lizards can run relatively fast). This pattern leads to interspecific differences in the levels of relative sprint speed that lizards are predicted to attain while active at their preferred temperatures. The highest levels of predicted relative performance are achieved by species that combine a narrow, precise distribution of preferred temperatures with the ability to sprint at near-maximum speeds over a wide range of body temperatures. The observed among-species differences in predicted relative speed were positively correlated with the interspecific variation in maximum sprinting capacities. Thus, species that attain the highest maximum speeds are (1) also able to run at near-maximum levels over a wide range of temperatures and (2) also maintain body temperatures within a narrow zone near the optimal temperature for sprinting. The observed pattern of correlated evolution therefore has involved traits at distinct levels of biological organization, that is, morphology, physiology, and behavior; and trade-offs are not evident. We hypothesize that this particular trait combination has evolved in response to coadaptational selection pressures. We also discuss our results in the context of possible evolutionary responses to global climatic change.  相似文献   

3.
Locomotor activity performance of reptiles is largely temperature dependent and, in harsh environments with short activity periods during the day and throughout the year, plays a vital role in the fitness of the species. This particular study focuses on the performance and the thermal sensitivity for running, at different body temperatures, of the two southernmost species of lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus, studied at two locations in the south of Santa Cruz province, Argentina (51°S, 70°W and 50°S, 72°W; 133 m asl). The speed of sprint and long runs was measured in the field to determine the physiological performance of lizards at different air temperatures. In both species speed increases with the temperature, and they reach the highest performance at high temperatures. The difference between activity and thermal optima suggests that L. magellanicus has colonized its actual environment recently, and that it has not had enough time for its physiological mechanisms to evolve and achieve a maximum performance at the cold temperatures they have to tolerate at present. In contrast, L. sarmientoi achieved a high performance over a wider range of temperatures that included temperatures lower than the preferred temperatures in the lab, which they can generally find in their environment.  相似文献   

4.
A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4 °C) and could tolerate a broader range of body temperatures (8.1–46.8 vs. 9.1–43.1 °C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21 °C to 33 °C, but decreased at 36 °C and 39 °C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout–vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages.  相似文献   

5.
Ectotherms thermoregulate to maintain their body temperature within the optimal range needed for performing vital functions. The effect of climate change on lizards has been studied as regards the sensitivity of locomotor performance to environmental temperatures. We studied thermoregulatory efficiency and locomotor performance for Liolaemus fitzgeraldi in the Central Andes of Argentina. We determined body temperature, micro-environmental temperatures and operative temperatures in the field. In the laboratory, we measured preferred temperatures and calculated the index of thermoregulatory efficiency. We estimated the thermal sensitivity of locomotion by measuring sprint speed (initial velocity and long sprint) and endurance at five different body temperatures. Body temperature was not associated with either micro-environmental temperature, nor did it show differences with preferred temperatures. Thermoregulatory efficiency was moderate (0.61). Initial velocity and long sprint trials showed differences at different temperatures; however, endurance did not. Moreover, the optimal temperatures for the performance trials showed no significant differences among themselves. We conclude that Liolaemus fitzgeraldi has thermal sensitivity in locomotor performance with respect to body temperature and that it is an eurythermic lizard that experiences a large variation in body temperature and that has thermal flexibility in the cold.  相似文献   

6.
Metamorphosis is assumed to be beneficial because it can break developmental links between traits in the different phases of a complex life-cycle and thereby allow larval and adult phases to adapt independently. I tested the prediction that correlations between the larval and adult phases are smaller than within stages. I estimated phenotypic and additive genetic variances and correlations for tadpole swimming speed, frog jump distance, body size, and larval period in a single population of the Pacific tree frog, Hyla regilla. These traits are known or reasonably assumed to be important for survival in this and other anuran species from temporary ponds. Only the three size variables were affected by sire identity. Heritabilities for locomotor performance, larval period, and size-independent performance were low (0.00-0.23) and not significant. Body size measurements showed somewhat higher and statistically significant heritabilities (0.24-0.34). Most traits were phenotypically correlated. On average, phenotypic correlations were larger between phases than within phases (0.41 vs. 0.28). Genetic correlations involving body-size traits were positive and large, and average within- and between-phase genetic correlation coefficients were identical (0.81). These results do not support the adaptive decoupling hypothesis, and they indicate that a paucity of additive genetic variation is a likely constraint on the evolution of traits measured for this population.  相似文献   

7.
Foraging behaviors exist along a continuum from highly sedentary, ambush foraging, to more continuous searching, or active foraging. Foraging strategies, or modes, are defined based upon locomotor behaviors (e.g. percent time moving, moves per minute). In lizards, traits correlated with ambush and active foraging have been of interest for some time; however, general patterns of correlated evolution between locomotor morphology and locomotor behavior have only recently begun to be quantified. In this study, variation in hindlimb morphology is investigated in a model group of lizard species that vary between active foraging and more sedentary (or mixed) foraging mode. Canonical variates analysis reveals that the two active foraging species occupy similar regions of the morphospace, while the two more sedentary species occupy different regions. The active foraging species have a narrow pelvis with shorter tibia and femora. The more sedentary species have a wide pelvis, long tibia and femora, and slightly longer metatarsals. Phylogenetic patterns of trait variation were examined through ancestral character state reconstruction and show morphological shifts in concert with foraging mode in these species. The observed shifts in locomotor morphology are discussed in light of published data on sprint speed and endurance in these species. Together, the data show that linking morphological variation to variation in stride length and stride frequency is critical to understanding the evolution of locomotor performance. Much more stride length and frequency data are needed among ambush, mixed, and active foraging species because these parameters, and their morphological components, are likely correlated with variation in food acquisition mode.  相似文献   

8.
Although of prime ecological relevance, acceleration capacity is a poorly understood locomotor performance trait in terrestrial vertebrates. No empirical data exist on which design characteristics determine acceleration capacity among species and whether these design traits influence other aspects of locomotor performance. In this study we explore how acceleration capacity and sprint speed have evolved in Anolis lizards. We investigate whether the same or different morphological traits (i.e., limb dimensions and muscle mass) correlate with both locomotor traits. Within our sample of Anolis lizards, relative sprint speed and acceleration capacity coevolved. However, whereas the variation in relative acceleration capacity is primarily explained by the variation in relative knee extensor muscle mass, the variation in relative sprint speed is correlated to the variation in relative femur, tibia, and metatarsus length as well as knee extensor muscle mass. The fact that the design features required to excel in either performance trait partly overlap might explain the positive correlation between the variation in relative sprint speed and acceleration capacity. Furthermore, our data show how similar levels of sprint performance can be achieved through different morphological traits (limb segment lengths and muscle mass) suggesting that redundant mapping has potentially played a role in mitigating trade-offs.  相似文献   

9.
The proximal mechanisms determining social dominance are not well understood. We used the highly territorial lizard A. cristatellus to test two main hypotheses: (1) that male social dominance is associated with locomotor abilities; (2) that locomotor abilities (maximal performance), as measured in the laboratory, are correlated with behaviour in the field. In the field, we recorded locomotor behaviours and assertion displays, then characterized microhabitat use and thermal relations. In the laboratory, we measured maximum sprint running speed, endurance and morphometric characters, and assessed dominance by pairing males of similar body size in an experimental arena. In 72 of 77 interactions, one lizard (the ‘winner’) was unequivocally determined to be dominant over the other (the ‘loser’). Winners performed more assertion displays than losers before capture and also had higher endurance in laboratory tests. Although contestants were matched for snout-vent length, winners had significantly deeper and wider heads. However, we found no significant differences in field locomotor behaviours, perch or thermal characteristics, head length, or maximal sprint speed. Our findings support those of previous studies, and extend them in several ways. This is the first demonstration that assertion displays in the field are related to both locomotor performance and laboratory-assessed social dominance. Locomotor performance may directly affect social dominance by allowing some males to perform better in dyadic interactions. Alternatively, both locomotor performance and social dominance may be linked to a common underlying mechanism, such as variation in hormone levels, which are known to affect aggression, locomotor performance and morphology.  相似文献   

10.
Natural selection is an important driver of microevolution. Yet, despite significant theoretical debate, we still have a poor understanding of how selection operates on interacting traits (i.e., morphology, performance, habitat use). Locomotor performance is often assumed to impact survival because of its key role in foraging, predator escape, and social interactions, and shows strong links with morphology and habitat use within and among species. In particular, decades of study suggest, but have not yet demonstrated, that natural selection on locomotor performance has shaped the diversification of Anolis lizards in the Greater Antilles. Here, we estimate natural selection on sprinting speed and endurance in small replicate island populations of Anolis sagrei. Consistent with past correlational studies, long-limbed lizards ran faster on broad surfaces but also had increased sprint sensitivity on narrow surfaces. Moreover, performance differences were adaptive in the wild. Selection favored long-limbed lizards that were fast on broad surfaces, and preferred broad substrates in nature, and also short-limbed lizards that were less sprint sensitive on narrow surfaces, and preferred narrow perches in nature. This finding is unique in showing that selection does not act on performance alone, but rather on unique combinations of performance, morphology, and habitat use. Our results support the long-standing hypothesis that correlated selection on locomotor performance, morphology, and habitat use drives the evolution of ecomorphological correlations within Caribbean Anolis lizards, potentially providing a microevolutionary mechanism for their remarkable adaptive radiation.  相似文献   

11.
Locomotor performance provides one of the key pieces of information regarding whole-organism function. Experiments encompassing behavioral data commonly endeavor to measure parameters such as burst speed, latency time, distance traveled, and other aspects of locomotion. Behavioral experiments can uncover an immense range of information, from the individual, interspecific, and intraspecific levels up to correlations with ecological factors and parameters from the ecosystem. Here, we explored the locomotor behavior of two lizard species, Lacerta viridis and Lacerta agilis, in an open field test (OFT). The main aim was to reveal changes in locomotion over time. Although we observed no time-related variation in L. agilis, we discovered significant changes in locomotor behavior over the course of the experiment in Lacerta viridis. Measured behavioral traits (resting time, total distance traveled, mean speed) showed significant changes across time in L. viridis, thus indicating the importance of time as a factor when conducting behavioral experiments. Moreover, we observed that in 10-min experimental session, the individuals have undergone different stages from freezing behavior, exploration, to habituation.  相似文献   

12.
If an organism''s juvenile and adult life stages inhabit different environments, certain traits may need to be independently adapted to each environment. In many organisms, a move to a different environment during ontogeny is accompanied by metamorphosis. In such organisms phenotypic induction early in ontogeny can affect later phenotypes. In laboratory experiments we first investigated correlations between body morphology and the locomotor performance traits expressed in different life stages of the common frog, Rana temporaria: swimming speed and acceleration in tadpoles; and jump-distance in froglets. We then tested for correlations between these performances across life stages. We also subjected tadpoles to unchanging or decreasing water levels to explore whether decreasing water levels might induce any carry-over effects. Body morphology and performance were correlated in tadpoles; morphology and performance were correlated in froglets: hence body shape and morphology affect performance within each life stage. However, performance was decoupled across life stages, as there was no correlation between performance in tadpoles and performance in froglets. While size did not influence tadpole performance, it was correlated with performance of the metamorphosed froglets. Experiencing decreasing water levels accelerated development time, which resulted in smaller tadpoles and froglets, i.e., a carry-over effect. Interestingly, decreasing water levels positively affected the performance of tadpoles, but negatively affected froglet performance. Our results suggest that performance does not necessarily have to be correlated between life stages. However, froglet performance is size dependent and carried over from the tadpole stage, suggesting that some important size-dependent characters cannot be decoupled via metamorphosis.  相似文献   

13.
Locomotor performance constitutes a major component of whole‐animal performance and is involved in several fitness‐related behaviors. Locomotor capabilities may also correspond positively or negatively to sexually selected traits (e.g., male ornamentation and/or courtship displays). Negative correlations are predicted if secondary sexual traits take the form of morphological modifications that impose physical or energetic limitations. We tested this cost of secondary sexual traits by comparing locomotor performance in male Schizocosa wolf spiders that exhibit two distinct phenotypes. These phenotypes vary in the presence/absence of a morphological feature assumed to function as sexual ornamentation—foreleg brushes. Given the conspicuously large brushes of hair on the brush‐legged phenotype, we expected these males to suffer in locomotor performance. We tested this cost by comparing locomotor performance among male phenotypes (brush‐legged and non‐ornamented) and females at immature and adult life stages. We did not find strong support for costs of brushes on locomotion. First, brush‐legged males showed similar average speeds and endurance as both non‐ornamented males and females. Second, while brush‐legged males were slower at maximum speeds than non‐ornamented males as matures (but not as immatures), they were no slower than mature females. Further, we found no variation in endurance among phenotypes or life stages. Finally, brush size did not correspond to speed. Patterns of morphological variation in traits other than ornamentation may explain these patterns: when morphological variation in leg lengths was accounted for, differences in maximum speed among groups disappeared. We suggest that the faster speeds achieved by non‐ornamented males arise as a by‐product of selection on morphology and musculature potentially necessary for vigorous courtship.  相似文献   

14.
A series of morphologieal and locomotor performance variables was measured in a population of newborn garter snakes to determine whether performance capacity has a significant morphological basis in these animals. Morphological traits measured were body length and mass, number of body and tail vertebrae and numbers of vertebral abnormalities. Locomotor performances included burst and mid-distance speed and distance and time crawled before anti-predator displays were assumed. All performance variables were repeatable in daily replicate trials ( P < 0.001). Individual burst speed, mid-distance speed, and distance crawled were significantly correlated pairwise ( P < 0.01). Most morphological and performance variables had a significant mass dependence (static allometry), although the effects were rather weak ( r 2 < 0.1, except for body length): larger animals performed better and had fewer abnormalities. There were significant associations between some morphological traits and locomotor performance. Morphological factors accounted for 19% of the variation in mid-distance speed and 14% of the variation in antipredator behavior by multiple regression analysis. Canonical correlation of all performance and morphological variables simultaneously accounted for 24% of the observed variation in performance. Numbers of body and tail vertebrae (assayed by scale counts) had an interactive effect on speed of locomotion.  相似文献   

15.
To understand how nest temperatures influence phenotypic traits of reptilian hatchlings, the effects of fluctuating temperature on hatchling traits must be known. Most investigations, however, have only considered the effects of constant temperatures. We incubated eggs of Takydromus septentrionalis (Lacertidae) at constant (24 degrees C, 27 degrees C, 30 degrees C and 33 degrees C) and fluctuating temperatures to determine the effects of these thermal regimes on incubation duration, hatching success and hatchling traits (morphology and locomotor performance). Hatching success at 24 degrees C and 27 degrees C was higher, and hatchlings derived from these two temperatures were larger and performed better than their counterparts from 30 degrees C and 33 degrees C. Eggs incubated at fluctuating temperatures exhibited surprisingly high hatching success and also produced large and well-performed hatchlings in spite of the extremely wide range of temperatures (11.6-36.2 degrees C) they experienced. This means that exposure of eggs to adversely low or high temperatures for short periods does not increase embryonic mortality. The variance of fluctuating temperatures affected hatchling morphology and locomotor performance more evidently than did the mean of the temperatures in this case. The head size and sprint speed of the hatchlings increased with increasing variances of fluctuating temperatures. These results suggest that thermal variances significantly affect embryonic development and phenotypic traits of hatchling reptiles and are therefore ecologically meaningful.  相似文献   

16.
The empirical study of natural selection reveals that adaptations often involve trade-offs between competing functions. Because natural selection acts on whole organisms rather than isolated traits, adaptive evolution may be constrained by the interaction between traits that are functionally integrated. Yet, few attempts have been made to characterize how and when such constraints are manifested or whether they limit the adaptive divergence of populations. Here we examine the consequences of adaptive life-history evolution on locomotor performance in the live-bearing guppy. In response to increased predation from piscivorous fish, Trinidadian guppies evolve an increased allocation of resources toward reproduction. These populations are also under strong selection for rapid fast-start swimming performance to evade predators. Because embryo development increases a female's wet mass as she approaches parturition, an increased investment in reproductive allocation should impede fast-start performance. We find evidence for adaptive but constrained evolution of fast-start swimming performance in laboratory trials conducted on second-generation lab-reared fish. Female guppies from high-predation localities attain a faster acceleration and velocity and travel a greater distance during fast-start swimming trials. However, velocity and distance traveled decline more rapidly over the course of pregnancy in these same females, thus reducing the magnitude of divergence in swimming performance between high- and low-predation populations. This functional trade-off between reproduction and swimming performance reveals how different aspects of the phenotype are integrated and highlights the complexity of adaptation at the whole-organism level.  相似文献   

17.
18.
Most male spiders are smaller than females; during sexual maturity, males change their behaviour, abandoning their web or nest to seek out receptive females actively, whereas females stalk prey near their web or nest and tend not to move away from it. Considering this behavioural difference to be associated with increased locomotor activity at maturity, it may be hypothesized that males will have traits that increase locomotor performance. The present study examines the kinetics and energetics of the movements of the mygalomorph spider Grammostola rosea Walckenaer, a large spider with sexual size dimorphism. It is found that males have a higher maximum aerobic speed, average speed, distance travelled and critical angle of climbing than females, indicating better performance. Males also have lower costs of transport than females. These results support the hypothesis that sexual dimorphism in wandering spiders with active males, which are characterized by smaller body size and longer legs than the larger and more static females, is associated with low transport cost, high velocity and better locomotor performance.  相似文献   

19.
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.  相似文献   

20.
Phenotypic differences among species are known to have functional consequences that in turn allow species to use different habitats. However, the role of behaviour in this ecomorphological paradigm is not well defined. We investigated the relationship between morphology, ecology and escape behaviour among 25 species of the lizard clade Liolaemus in a phylogenetic framework. We demonstrate that the relationship between morphology and characteristics of habitat structure shows little or no association, consistent with a previous study on this group. However, a significant relationship was found between morphology and escape behaviour with the distance a lizard moved from a potential predator correlated with body width, axilla-groin length, and pelvis width. A significant relationship between escape behaviour and habitat structure occupation was found; lizards that occupied tree trunks and open ground ran longer distances from predators and were found greater distances from shelter. Behavioural strategies used by these lizards in open habitats appear to have made unnecessary the evolution of limb morphology that has occurred in other lizards from other clades that are found in open settings. Understanding differences in patterns of ecomorphological relationships among clades is an important component for studying adaptive diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号