首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps.  相似文献   

2.
A predicted interactome for Arabidopsis   总被引:5,自引:1,他引:4       下载免费PDF全文
The complex cellular functions of an organism frequently rely on physical interactions between proteins. A map of all protein-protein interactions, an interactome, is thus an invaluable tool. We present an interactome for Arabidopsis (Arabidopsis thaliana) predicted from interacting orthologs in yeast (Saccharomyces cerevisiae), nematode worm (Caenorhabditis elegans), fruitfly (Drosophila melanogaster), and human (Homo sapiens). As an internal quality control, a confidence value was generated based on the amount of supporting evidence for each interaction. A total of 1,159 high confidence, 5,913 medium confidence, and 12,907 low confidence interactions were identified for 3,617 conserved Arabidopsis proteins. There was significant coexpression of genes whose proteins were predicted to interact, even among low confidence interactions. Interacting proteins were also significantly more likely to be found within the same subcellular location, and significantly less likely to be found in conflicting localizations than randomly paired proteins. A notable exception was that proteins located in the Golgi were more likely to interact with Golgi, vacuolar, or endoplasmic reticulum sorted proteins, indicating possible docking or trafficking interactions. These predictions can aid researchers by extending known complexes and pathways with candidate proteins. In addition we have predicted interactions for many previously unknown proteins in known pathways and complexes. We present this interactome, and an online Web interface the Arabidopsis Interactions Viewer, as a first step toward understanding global signaling in Arabidopsis, and to whet the appetite for those who are awaiting results from high-throughput experimental approaches.  相似文献   

3.

Background

Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins.

Methodology/Principal Findings

Here, we performed yeast two-hybrid screens with human septins 1–10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments.

Conclusions/Significance

If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the “group rule”, i.e. members of the same group (e.g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.  相似文献   

4.
Ghavidel A  Cagney G  Emili A 《Cell》2005,122(6):830-832
In this issue of Cell, Wanker and colleagues (Stelzl et al., 2005) present a large-scale two-hybrid map of more than 3000 putative human protein-protein interactions. These new data will serve as an important source of information regarding individual protein partners and offer preliminary insight into the global molecular organization of human cells.  相似文献   

5.
A more complete, complexed and structured interactome   总被引:2,自引:0,他引:2  
Multiprotein complexes are key players in virtually all important cellular processes. The past year has seen the publication of several papers that have illuminated what we know about the number and composition of these molecular machines, using high-throughput purification methods. Other studies have illuminated structural and functional aspects of protein interactions, networks and molecular assemblies. As a result, we have a more complete view of how many complexes are in living systems, what they look like and the roles they play in the cell.  相似文献   

6.
高通量酵母双杂交与免疫亲和纯化技术的快速发展和日臻成熟,使得在蛋白质组水平上大规模地研究蛋白质之间的相互作用成为可能。目前,人类蛋白质互作网络在细胞、组织、器官乃至整个个体水平的研究已经陆续展开。蛋白质互作网络中蛋白质数量也由少数几个向整个蛋白质组扩展。同时,功能、疾病、生态等相关的蛋白质互作网络研究也取得了一定的成果。然而,人类的蛋白质互作网络研究正面临着一些问题和挑战。本文综述了人类蛋白质互作网络的研究方法、研究进展以及面临的挑战,同时指出了人类蛋白质互作网络研究的方向和目标。  相似文献   

7.
8.
DAP-kinase (DAPK) is a Ca2+/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK’s cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK’s catalytic activity. For example, by virtue of protein–protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1β production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.  相似文献   

9.
Guo W  Liu S  Peng J  Wei X  Sun Y  Qiu Y  Gao G  Wang P  Xu Y 《PloS one》2012,7(5):e37098
Huperzine A is a bioactive compound derived from traditional Chinese medicine plant Qian Ceng Ta (Huperzia serrata), and was found to have multiple neuroprotective effects. In addition to being a potent acetylcholinesterase inhibitor, it was thought to act through other mechanisms such as antioxidation, antiapoptosis, etc. However, the molecular targets involved with these mechanisms were not identified. In this study, we attempted to exam the interactome of Huperzine A using a cDNA phage display library and also mammalian brain tissue extracts. The drugs were chemically linked on the surface of magnetic particles and the interactive phages or proteins were collected and analyzed. Among the various cDNA expressing phages selected, one was identified to encode the mitochondria NADH dehydrogenase subunit 1. Specific bindings between the drug and the target phages and target proteins were confirmed. Another enriched phage clone was identified as mitochondria ATP synthase, which was also panned out from the proteome of mouse brain tissue lysate. These data indicated the possible involvement of mitochondrial respiratory chain matrix enzymes in Huperzine A's pharmacological effects. Such involvement had been suggested by previous studies based on enzyme activity changes. Our data supported the new mechanism. Overall we demonstrated the feasibility of using magnetic biopanning as a simple and viable method for investigating the complex molecular mechanisms of bioactive molecules.  相似文献   

10.
11.
The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on a sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodium chloride. Eluted proteins were separated by denaturing sodium-dodecyl sulfate gel electrophoresis and were identified by mass spectrometry. Several previously unidentified full-length sclerostin-interacting proteins such as alkaline phosphatase, carbonic anhydrase, gremlin-1, fetuin A, midkine, annexin A1 and A2, and collagen α1, which have established roles in bone formation or resorption processes, were bound to the sclerostin-MBP amylose resin but not to the MBP amylose resin. Other full-length sclerostin-interacting proteins such as casein kinase II and secreted frizzled related protein 4 that modulate Wnt signaling were identified. Several peptides derived from proteins such as Phex, asporin and follistatin that regulate bone metabolism also bound sclerostin. Sclerostin interacts with multiple proteins that alter bone formation and resorption and is likely to function by altering several biologically relevant pathways in bone.  相似文献   

12.
13.
14.
Friedel CC  Zimmer R 《Nature biotechnology》2006,24(6):614-5; author reply 615
  相似文献   

15.
The elusive yeast interactome   总被引:2,自引:2,他引:0  
Goll J  Uetz P 《Genome biology》2006,7(6):223-6
Simple eukaryotic cells such as yeast could contain around 800 protein complexes, as two new comprehensive studies show. But slightly different approaches resulted in surprising differences between the two datasets, showing that more work is required to get a complete picture of the yeast interactome.  相似文献   

16.
The integration of information on different aspects of the composition and function of mitochondria is defining a more comprehensive mitochondrial interactome and elucidating its role in a multitude of cellular processes and human disease.  相似文献   

17.
18.
  相似文献   

19.
  1. Download : Download high-res image (327KB)
  2. Download : Download full-size image
Highlights► Photocrosslinking provides insight into context-dependent interactions. ► Interactome dynamics can be determined by photocrosslinking. ► Use of photocrosslinkers defines specific interaction interfaces within large complexes. ► Crosslinking captures transient interaction complexes containing IDPs and glycoproteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号