首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anderson JB  Sirjusingh C  Ricker N 《Genetics》2004,168(4):1915-1923
We tested the hypothesis that the time course of the evolution of antifungal drug resistance depends on the ploidy of the fungus. The experiments were designed to measure the initial response to the selection imposed by the antifungal drug fluconazole up to and including the fixation of the first resistance mutation in populations of Saccharomyces cerevisiae. Under conditions of low drug concentration, mutations in the genes PDR1 and PDR3, which regulate the ABC transporters implicated in resistance to fluconazole, are favored. In this environment, diploid populations of defined size consistently became fixed for a resistance mutation sooner than haploid populations. Experiments manipulating population sizes showed that this advantage of diploids was due to increased mutation availability relative to that of haploids; in effect, diploids have twice the number of mutational targets as haploids and hence have a reduced waiting time for mutations to occur. Under conditions of high drug concentration, recessive mutations in ERG3, which result in resistance through altered sterol synthesis, are favored. In this environment, haploids consistently achieved resistance much sooner than diploids. When 29 haploid and 29 diploid populations were evolved for 100 generations in low drug concentration, the mutations fixed in diploid populations were all dominant, while the mutations fixed in haploid populations were either recessive (16 populations) or dominant (13 populations). Further, the spectrum of the 53 nonsynonymous mutations identified at the sequence level was different between haploids and diploids. These results fit existing theory on the relative abilities of haploids and diploids to adapt and suggest that the ploidy of the fungal pathogen has a strong impact on the evolution of fluconazole resistance.  相似文献   

2.
Effects of the rad 2-20, rad 9-4, r1s, and the corresponding wild type RAD alleles in haploid and homozygous diploid Saccharomyces strains on UV induced mutation rates from adenine, lysine and histidine dependence to independence are reported. The UV induced mutation rates were similar for the RAD, r1s, and rad 9-4 haploids, whereas the rad 2-20 mutation causes a marked increase in the UV induced mutation rates. The diploid rad 2-20 strain also exhibits a marked increase in the UV induced mutation rates, whereas the rad 9-4 diploid has reduced mutation rates when compared to the wildtype. The UV induced mutation rates of haploid and diploid RAD strains are almost identical. For the rad 2-20 and rad 9-4 diploids, however, these rates are smaller than in the corresponding haploid strains. Differential effects of the rad genes on the ratio of locus to suppressor mutations were found. The implications of these findings on possible repair processes in yeasts are discussed.  相似文献   

3.
The alternation of eukaryotic life cycles between haploid and diploid phases is crucial for maintaining genetic diversity. In some organisms, the growth and development of haploid and diploid phases are nearly identical, and one might suppose that all genes required for one phase are likely to be critical for the other phase. Here, we show that targeted disruption of the chpA (cysteine- and histidine-rich-domain- [CHORD]-containing protein A) gene in haploid Aspergillus nidulans strains gives rise to chpA knockout haploids and heterozygous diploids but no chpA knockout diploids. A. nidulans chpA heterozygous diploids showed impaired conidiophore development and reduced conidiation. Deletion of chpA from diploid A. nidulans resulted in genome instability and reversion to a haploid state. Thus, our data suggest a vital role for chpA in maintenance of the diploid phase in A. nidulans. Furthermore, the human chpA homolog, Chp-1, was able to complement haploinsufficiency in A. nidulans chpA heterozygotes, suggesting that the function of CHORD-containing proteins is highly conserved in eukaryotes.  相似文献   

4.
5.
Many organisms spend a significant portion of their life cycle as haploids and as diploids (a haploid–diploid life cycle). However, the evolutionary processes that could maintain this sort of life cycle are unclear. Most previous models of ploidy evolution have assumed that the fitness effects of new mutations are equal in haploids and homozygous diploids, however, this equivalency is not supported by empirical data. With different mutational effects, the overall (intrinsic) fitness of a haploid would not be equal to that of a diploid after a series of substitution events. Intrinsic fitness differences between haploids and diploids can also arise directly, for example because diploids tend to have larger cell sizes than haploids. Here, we incorporate intrinsic fitness differences into genetic models for the evolution of time spent in the haploid versus diploid phases, in which ploidy affects whether new mutations are masked. Life‐cycle evolution can be affected by intrinsic fitness differences between phases, the masking of mutations, or a combination of both. We find parameter ranges where these two selective forces act and show that the balance between them can favor convergence on a haploid–diploid life cycle, which is not observed in the absence of intrinsic fitness differences.  相似文献   

6.
Using the Saccharomyces cerevisiae MATa/MATalpha ORF deletion collection, homozygous deletion strains were identified that undergo mating with MATa or MATalpha haploids. Seven homozygous deletions were identified that confer enhanced mating. Three of these, lacking CTF8, CTF18, and DCC1, mate at a low frequency with either MATa or MATalpha haploids. The products of these genes form a complex involved in sister chromatid cohesion. Each of these strains also exhibits increased chromosome loss rates, and mating likely occurs due to loss of one copy of chromosome III, which bears the MAT locus. Three other homozygous diploid deletion strains, ylr193cDelta/ylr193cDelta, yor305wDelta/yor305wDelta, and ypr170cDelta/ypr170cDelta, mate at very low frequencies with haploids of either or both mating types. However, an ist3Delta/ist3Delta strain mates only with MATa haploids. It is shown that IST3, previously linked to splicing, is required for efficient processing of the MATa1 message, particularly the first intron. As a result, the ist3Delta/ist3Delta strain expresses unbalanced ratios of Matalpha to Mata proteins and therefore mates with MATa haploids. Accordingly, mating in this diploid can be repressed by introduction of a MATa1 cDNA. In summary, this study underscores and elaborates upon predicted pathways by which mutations restore mating function to yeast diploids and identifies new mutants warranting further study.  相似文献   

7.
Septins are a highly conserved family of GTP‐binding proteins that contribute to many cellular and metabolic functions, including cell polarity, cytokinesis, cell morphogenesis and pathogenesis. In this study, we characterized the septins FaCdc3 and FaCdc12 in the filamentous fungus Fusarium asiaticum. The functions of FaCdc3 and FaCdc12 were evaluated by constructing deletion mutants of FaCdc3 and FaCdc12, designated ΔFaCdc3‐5 and ΔFaCdc12‐71, respectively. The deletion mutants exhibited a reduced rate of mycelial growth, increased aerial hyphae formation, irregularly shaped hyphae, reduced conidiation and a lack of sexual reproduction in wheat kernels. Histochemical analysis revealed that the conidia and hyphae of ΔFaCdc3‐5 and ΔFaCdc12‐71 formed large lipid droplets (LDs). ΔFaCdc3‐5 and ΔFaCdc12‐71 also exhibited increased resistance to agents that induce osmotic stress and damage the cell membrane and cell wall. In addition, the hyphae and conidia of the two mutants formed fewer septa than those of the wild‐type and exhibited aberrant nuclear distribution. Pathogenicity assays showed that ΔFaCdc3‐5 and ΔFaCdc12‐71 exhibited reduced virulence on wheat spikelets, which was indirectly correlated with a reduced level of deoxynivalenol accumulation. All of these defects were restored by genetic complementation of the two mutants with the parental FaCdc3 and FaCdc12. These results indicate that FaCdc3 and FaCdc12 play a critical role in various cellular processes in F. asiaticum.  相似文献   

8.
Youngman PJ  Anderson RW  Holt CE 《Genetics》1981,97(3-4):513-530
The mating of Physarum polycephalum amoebae, the ultimate consequence of which is a "plasmodium," was recently shown to be governed by two compatibility loci, matA (or mt) and matB (Dee 1978; Youngmanet al. 1979). We present evidence that matA and matB separately regulate two discrete stages of mating: in the first stage, amoebae (which are normally haploid) fuse in pairs, with a specificity determined by matB genotype, to form diploid zygotes; subsequent differentiation of the zygotes into plasmodia is regulated by matA and is unaffected by matB. Mixtures of amoebae carrying unlike matA and matB alleles formed diploids to the extent of 10 to 15% of the cells present, and the diploids differentiated into plasmodia. When only the matB alleles differed, diploid cells still formed to a comparable (5 to 10%) extent, but rather than differentiating, these diploids remained amoebae. When strains carried the same alleles of matB, formation of diploid cells was greatly reduced: in like-matB, like-matA mixtures, none of 320 cells examined was diploid; in like-matB, unlike mat-A mixtures, differentiating diploids could be detected, but at only 10(-3) to 10(-2) the frequency of unlike-matB, unlike-matA mixtures. The nondifferentiating diploid amoebae recovered from unlike-matB, like-matA mixtures were genetically stable through extensive growth, even though they grew more slowly than haploids (10-hr vs. 8-hr doubling period), and could be crossed with both haploids and diploids. The results of such higher ploidy and mixed ploidy crosses indicate that karyogamy does not invariably accompany zygote formation and differentiation.  相似文献   

9.
Yeast cells undergo diploid-specific developments such as spore formation via meiosis and pseudohyphal development under certain nutrient-limited conditions. Studies on these aspects require homozygous diploid mutants, which are generally constructed by crossing strains of opposite mating-type with the same genetic mutation. So far, there has been no direct way to generate and select diploids from haploid cells. Here, we developed a method for efficient construction of homozygous diploids using a PGAL1-HO gene (galactose-inducible mating-type switch) and a PSTE18-URA3 gene (counter selection marker for diploids). Diploids are generated by transient induction of the HO endonuclease, which is followed by mating of part of the haploid population. Since the STE18 promoter is repressed in diploids, diploids carrying PSTE18-URA3 can be selected on 5-fluoroorotic acid (5-FOA) plates where the uracil prototrophic haploids cannot grow. To demonstrate that this method is useful for genetic studies, we screened suppressor mutations of the complex colony morphology, strong agar invasion and/or hyper-filamentous growth caused by lack of the Hog1 MAPK in the diploid Σ1278b strain background. Following this approach, we identified 49 suppressor mutations. Those include well-known positive regulator genes for filamentous growth signaling pathways, genes involved in mitochondrial function, DNA damage checkpoint, chromatin remodeling, and cell cycle, and also previously uncharacterized genes. Our results indicate that combinatorial use of the PGAL1-HO and PSTE18-URA3 genes is suitable to efficiently construct and select diploids and that this approach is useful for genetic studies especially when combined with large-scale screening.  相似文献   

10.
Chromosome studies of progenies of tetraploid female rainbow trout   总被引:4,自引:0,他引:4  
Summary Nine induced tetraploid females were artificially inseminated by UV-irradiated sperm collected from diploid males, in order to induce the gynogenetic development of their ova. Most of the resulting embryos were diploid (or minor aneuploids). Several gynogenetic tetraploids, likely to issue from unreduced ova, were also detected in these progenies. The same females fertilized by normal sperm of diploid males gave a majority of triploids and several pentaploids, while the fertilization by normal sperm of tetraploid males gave rise to a majority of tetraploids and one hexaploid. The same crosses, after the eggs had been heat-shocked to double the maternal genetic contribution, yielded about three-quarters pentaploids and one quarter haploids (normal sperm of diploids), or three-quarters hexaploids and one quarter diploids (normal sperm of tetraploids). These haploids and diploids are likely to result from androgenesis.  相似文献   

11.
A new gene for a new purpose may be created by mutation of a pre-existing gene. But if that original gene is still required for its original purpose, and is to be retained side by side with the new, a spare copy is needed initially as raw material for the innovation. Thus in haploids the original gene must be duplicated before it is modified. But in diploids a spare copy of every gene is always available, and a mutant allele serving a new purpose can be easily established and maintained by heterosis in parallel with the old allele. Subsequent gene duplication will lead, via crossing-over, to insertion of the new gene in tandem with the old, as a permanent addition to the genome. Calculations show that diploids can thus enlarge their genomes with new genes for new purposes much more readily than haploids; in particular, they can more easily evolve the complex gene control systems characteristic of differentiated multicellular organisms. Sexual reproduction preserves diploidy, and so can be seen as the basis of these richer possibilities for evolutionary innovation.  相似文献   

12.
The mitogen-activated protein kinase (MAPK) pathways are conserved from fungi to humans and have been shown to play important roles in mating and filamentous growth for both Saccharomyces cerevisiae and dimorphic fungi and in infectivity for pathogenic fungi. STE20 encodes a protein kinase of the p21-activated protein kinase family that regulates more than one of these cascades in yeasts. We hypothesized that an Ste20p homologue would play a similar role in the dimorphic plant pathogen Ustilago maydis. The full-length copy of the U. maydis gene was obtained from a genomic library; it lacked introns and was predicted to encode a protein of 826 amino acids, whose sequence confirmed its identity as the first Ste20p homologue to be isolated from a plant pathogen. The predicted protein contained both an N-terminal regulatory Cdc42-Rac interactive binding domain and a C-terminal catalytic kinase domain. Disruption of the gene smu1 resulted in a delayed mating response in a mating-type-specific manner and also in a severe reduction in disease production on maize. Unlike the Ustilago bypass of cyclase (ubc) mutations previously identified in genes in the pheromone-responsive MAPK cascade, mutation of smu1 does not by itself act as an extragenic suppressor of the filamentous phenotype of a uac1 mutant. Thus, the direct connection of Smu1p to MAPK cascade function has yet to be established. Even so, Smu1, though not absolutely required for mating, is necessary for wild-type mating and pathogenicity.  相似文献   

13.
14.
Genetic complementation in Cryptococcus neoformans.   总被引:2,自引:0,他引:2       下载免费PDF全文
A complementation test was devised for the fungus Cryptococcus neoformans. Complementation was signalled by the growth of prototrophic heterokaryons generated in crosses of the type aB X Ab, where a and b represent any two of the genetic markers ilv1, cys1, cys2, and cys3. The cloned complementing heterokaryons formed characteristic hyphal colonies that contained both hyphae and yeast cells. The heterokaryon-derived yeasts were of three kinds: parental haploids, recombinant haploids, and diploids.  相似文献   

15.
Reed B. Wickner 《Genetics》1978,88(3):419-425
The double-stranded RNA killer plasmid gives yeast strains carrying it both the ability to secret a protein toxin and immunity to that toxin. This report describes a new series of mutants in chromsomal genes needed for killer plasmid maintenance (mak genes). These mutants comprise 12 complementation groups. There are a total of at least 26 mak genes. Each mak gene product is needed for plasmid maintenance in diploids as well as in haploids. None of these mak mutations prevent the killer plasmid from entering the mak- spores in the process of meiotic sporulation. Complementation between mak mutants can be performed by mating meitoic spores from a makx/+ plasmid-carrying diploid with a maky haploid. If x = y, about half the diploid clones formed lose the killer plasmid. If x not equal to y, complementation occurs, and all of the diploid clones are killers.  相似文献   

16.
S ummary . Heterocaryons and diploids from Aspergillus oryzae were investigated with respect to nuclear number/conidium and to conidial size. Heterocaryons usually had larger conidia and more nuclei/conidium than diploids and the haploid parent mutants. Diploids contained significantly fewer nuclei/conidium than haploids. However, they could not be distinguished from haploids by measurement of conidial size. The strains were examined for the production of α-amylase. All auxotrophic mutants produced less α-amylase than the prototrophic wild type. Heterocaryons gave yields which were intermediate between that of their parent mutants or the same as the best producing parent. Diploids which produced more α-amylase than the best producing parent strain were synthesized. The highest yield from a diploid was of the same order of magnitude as the yield from the wild type.  相似文献   

17.
LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation.  相似文献   

18.
Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are the major enzymes involved in the biosynthesis of secondary metabolites, which have diverse activities, including roles as pathogenicity/virulence factors in plant pathogenic fungi. These enzymes are activated by 4'-phosphopantetheinylation at the conserved serine residues, which is catalysed by 4'-phosphopantetheinyl transferase (PPTase). PPTase is also required for primary metabolism (α-aminoadipate reductase, AAR). In the genome sequence of the cereal fungal pathogen Cochliobolus sativus, we identified a gene (PPT1) orthologous to the PPTase-encoding genes found in other filamentous ascomycetes. The deletion of PPT1 in C. sativus generated mutants (Δppt1) that were auxotrophic for lysine, unable to synthesize melanin, hypersensitive to oxidative stress and significantly reduced in virulence to barley cv. Bowman. To analyse the pleiotropic effects of PPT1, we also characterized deletion mutants for PKS1 (involved in melanin synthesis), AAR1 (for AAR) and NPS6 (involved in siderophore-mediated iron metabolism). The melanin-deficient strain (Δpks1) showed no differences in pathogenicity and virulence compared with the wild-type strain. Lysine-auxotrophic mutants (Δaar1) induced spot blotch symptoms, as produced by the wild-type strain, when inoculated on wounded barley leaves or when lysine was supplemented. The Δnps6 strain showed a slightly reduced virulence compared with the wild-type strain, but exhibited significantly higher virulence than the Δppt1 strain. Our results suggest that an unknown virulence factor, presumably synthesized by PKSs or NRPSs which are activated by PPTase, is directly responsible for high virulence of C. sativus on barley cv. Bowman.  相似文献   

19.
Trichothecenes are a group of toxic secondary metabolites produced mainly by Fusarium graminearum (teleomorph: Gibberella zeae) during the infection of crop plants, including wheat, maize, barley, oats, rye and rice. Some fungal genes involved in trichothecene biosynthesis have been shown to encode regulatory proteins. However, the global regulation of toxin biosynthesis is still enigmatic. In addition to the production of secondary metabolites belonging to the trichothecene family, F. graminearum produces the red pigment aurofusarin. The gene regulation underlying the production of aurofusarin is not well understood. The velvet gene (veA) is conserved in various genera of filamentous fungi. Recently, the veA gene from Aspergillus nidulans has been shown to be the key component of the velvet complex regulating development and secondary metabolism. Using blast analyses, we identified the velvet gene from F. graminearum, FgVe1. Disruption of FgVe1 causes several phenotypic effects. However, the complementation of this mutant with the FgVe1 gene restores the wild-type phenotypes. The in vitro phenotypes include hyperbranching of the mycelium, suppression of aerial hyphae formation, reduced hydrophobicity of the mycelium and highly reduced sporulation. Our data also show that FgVe1 modulates the production of the aurofusarin pigment and is essential for the expression of Tri genes and the production of trichothecenes. Pathogenicity studies performed on flowering wheat plants indicate that FgVe1 is a positive regulator of virulence in F. graminearum.  相似文献   

20.
Wild-type isolates of Dictyostelium discoideum exhibited differences in the size of restriction fragments of the extrachromosomal 88-kilobase ribosomal DNA (rDNA) palindrome. Polymorphisms in rDNA also were found among strains derived solely from the NC4 wild-type isolate. These variations involved EcoRI fragments II, III, and V; they included loss of the EcoRI site separating fragments II and V and deletion and insertion of DNA. More than one rDNA form can coexist in the same diploid or haploid cell. However, one or another parental rDNA tended to predominate in diploids constructed, using the parasexual cycle, between haploid NC4-derived strains and haploid wild-type isolates. In some cases, most if not all of the rDNA of such diploids were of one form after ca. 50 generations of growth. Segregant haploids, derived from diploids that possessed predominantly a single rDNA allele, possessed the same allele as the diploid and did not recover the other form. This evidence implies that replication does not proceed from a single chromosomal or extrachromosomal copy of the rDNA during the asexual life cycle of D. discoideum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号