首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The survival of Bacillus pumilus SAFR-032 spores to standard industrial clean room sterilization practices necessitates the development of rapid molecular diagnostic tool(s) for detection and enumeration of viable bacterial spores in industrial clean room environments. This is of importance to maintaining the sterility of clean room processing products. This paper describes the effect of propidium monoazide (PMA) on fluorescence in situ hybridization (FISH) for detecting and enumerating B. pumilus SAFR-032 viable spores having been artificially encapsulated within poly(methylmethacrylate) (Lucite, Plexiglas) and released via an organic solvent (PolyGone-500). The results of the PMA-FISH experiments discussed herein indicate that PMA was able to permeate only the compromised coat layers of non-viable spores, identifying PMA treatment of bacterial spores prior to FISH analysis as a novel method for selecting out the fraction of the spore population that is non-viable from fluorescence detection. The ability of novel PMA-FISH to selectively distinguish and enumerate only the living spores present in a sample is of potential significance for development of improved strategies to minimize spore-specific microbial burden in a given environment.  相似文献   

2.
Recent environmental microbial sampling of the ultraclean Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory (JPL-SAF) identified spores of Bacillus pumilus as major culturable bacterial contaminants found on and around spacecraft. As part of an effort to assess the efficacy of various spacecraft sterilants, purified spores of 10 JPL-SAF B. pumilus isolates were subjected to 254-nm UV and their UV resistance was compared to spores of standard B. subtilis biodosimetry strains. Spores of six of the 10 JPL-SAF isolates were significantly more resistant to UV than the B. subtilis biodosimetry strain, and one of the JPL-SAF isolates, B. pumilus SAFR-032, exhibited the highest degree of spore UV resistance observed by any Bacillus spp. encountered to date.  相似文献   

3.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

4.
Aims: To evaluate the inactivation of Bacillus anthracisΔSterne and Ames spores using electrochemically generated liquid‐phase chlorine dioxide (eClO2) and compare two sporulation and decontamination methods with regard to cost, safety and technical constraints. Methods and Results: Spores were prepared via agar and broth methods and subsequently inoculated and dried onto clean, autoclave‐sterilized glass coupons. Bacillus anthracis spore inactivation efficacy was evaluated using the modified three‐step method (AOAC 2008.05) and a single‐tube extraction method. Spores (7·0 ± 0·5 logs) were inactivated within 1 min at room temperature using freshly prepared eClO2. Bacillus anthracisΔSterne spores decreased in size after eClO2 treatment as measured using a Beckman Coulter Multisizer. Conclusions: eClO2 saturation of a hard surface was an effective B. anthracis sporicide. Broth sporulation and the single‐tube extraction method required less time and fewer steps, yielded a higher percentage of phase‐bright spores and showed higher spore recovery efficiency compared with AOAC 2008.05, making it more amenable to biosafety level 3 (BSL3) testing of virulent spores. Significance and Impact of the Study: Two test methods demonstrated the sporicidal efficacy of eClO2. A new single‐tube extraction test protocol for decontaminants was introduced.  相似文献   

5.
The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA''s Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061T. This cluster of five genes is considered to be an especially promising target for future experimental work.  相似文献   

6.
Novel noninvasive techniques for the removal of biological contaminants to generate clean or sterile materials are in demand by the medical, pharmaceutical and food industries. The sterilization method described here uses supercritical fluid carbon dioxide (SF-CO2) containing 3.3% water and 0.1% hydrogen peroxide (v/v/v) to achieve from four to eight log viability reduction of all tested microbial species, including vegetative cells, spores and biofilms. The sterilization method employs moderate pressure and temperature (80 atm, 50 °C) and a short (30-minute) treatment time. The procedure kills various opportunistic pathogens that often persist in biofilm structures, fungal spores commonly associated with nosocomial infections, and Bacillus pumilus SAFR-032 endospores that are notoriously hard to eradicate by conventional sterilization techniques.  相似文献   

7.
The objective of this study was to determine the remarkable role of the microwave power density of argon plasma in the inactivation of Bacillus subtilis, Bacillus stearothermophilus and Bacillus pumilus spores deposited on polypropylene bio‐indicator carriers. In particular, spore survival by argon plasma was determined as a function of the initial spore density of the bio‐indicators. The microwave induced argon plasmas were generated at 1.47, 2.63 and 4.21 w/cm3 microwave power densities under a low gas pressure of 50 Pa at an ambient temperature of 15 °C to reach low temperature distribution of 31, 35 and 43 °C, respectively. Our results indicate that the different Bacillus spores showed distinct degrees of argon plasma sensitivity, and spore survival was significantly reduced when the microwave power density of the plasma treatments was increased. Among the three Bacillus strains, Bacillus subtilis was the most argon plasma resistant, whereas Bacillus stearothermophilus was the most sensitive. However, spore survival was not affected by the initial spore density of the bio‐indicators. Only a certain degree of the spore inactivation log (No/N) from 1.67 to 1.95 was observed despite the 4‐order differences in the initial spore density of the Bacillus pumilus bio‐indicators.  相似文献   

8.
Aims: To determine the effects of Mn levels in Bacillus megaterium sporulation and spores on spore resistance. Methods and Results: Bacillus megaterium was sporulated with no added MnCl2 and up to 1 mmol l?1 MnCl2. The resultant spores were purified and loosely bound Mn removed, and spore Mn levels were found to vary c. 100‐fold. The Mn level had no effect on spore γ‐radiation resistance, but B. megaterium spores with elevated Mn levels had higher resistance to UVC radiation (as did Bacillus subtilis spores), wet and dry heat and H2O2. However, levels of dipicolinic acid and the DNA‐protective α/β‐type small, acid‐soluble spore proteins were the same in spores with high and low Mn levels. Conclusions: Mn levels either in sporulation or in spores are important factors in determining levels of B. megaterium spore resistance to many agents, with the exception of γ‐radiation. Significance and Impact of the Study: The Mn level in sporulation is an important factor to consider when resistance properties of B. megaterium spores are examined, and will influence the UV resistance of B. subtilis spores, some of which are used as biological dosimeters.  相似文献   

9.
通过比较四种品系小鼠对炭疽芽胞杆菌(Bacillus anthracis)(简称炭疽杆菌)弱毒株芽胞的敏感性,确定炭疽杆菌弱毒株芽胞攻毒合适的动物模型。采用炭疽杆菌弱毒株A16Q1(pXO1-、pXO2+)和A16PI2(pXO1+、pXO2-)的芽胞对四种品系小鼠(DBA/2、KM、ICR和BALB/c)进行腹腔攻毒,记录小鼠死亡时间,计算LD50、绘制存活曲线并统计分析。运用较敏感的KM小鼠研究不同canSNP基因型毒素缺陷株(含pXO2拷贝数不同)芽胞的毒力差异。利用更为敏感的DBA/2小鼠评价S-层蛋白BA3338对荚膜缺陷株芽胞毒力的影响。结果表明,在四种品系小鼠中,毒素缺陷株芽胞的毒力均高于荚膜缺陷株芽胞的毒力。DBA/2小鼠对炭疽杆菌弱毒株芽胞的剂量依赖关系最好,最为敏感,其次是KM小鼠,而ICR小鼠和BALB/c小鼠对炭疽杆菌弱毒株芽胞不敏感。确定了DBA/2小鼠和KM小鼠在炭疽杆菌弱毒株芽胞研究中的适用性。使用KM小鼠评价了不同canSNP基因型炭疽杆菌芽胞的毒力差异,结果表明,不同canSNP基因型炭疽杆菌由于所含pXO2质粒拷贝数的差异导致芽胞的毒力不同。使用DBA/2小鼠评价了S-层蛋白BA3338缺失对炭疽杆菌芽胞毒力的影响,表明BA3338基因的缺失导致炭疽杆菌芽胞毒力降低。  相似文献   

10.
Comparisons of the genomes of Bacillus pumilus SAFR-032 and the closely related type strain, B. pumilus ATCC7061T, exposed an extended region of non-homologous genes. A detailed examination of this region revealed the presence of an ICEBs1-like integrative conjugative element in SAFR-032. A similar element was subsequently located elsewhere in the ATCC7061T genome. A detailed comparison of these elements and the ICEBs1 of B. subtilis revealed extremely rapid flux in gene content, genome organization and sequence similarity. It is not clear if the B. pumilus elements as they are currently structured are functional. However, it is clear that the past involvement of these elements has brought multiple genes of unknown function to the SAFR-032 genome and these genes may be responsible for the rapid evolution that led to the extreme radiation and desiccation resistance of this organism’s spores.  相似文献   

11.
This study was taken up with a view to generate basic information on spore hardiness to ethanol in various Bacillus species and related genera, and to assess the effectiveness of different levels of ethanol as a bacterial disinfectant. Predominantly spore-bearing cultures of five Bacillus spp. (B. pumilus, B. subtilis, B. megaterium, B. fusiformis and B. flexus) that were isolated from the spent-alcohol used during plant tissue culture work were challenged with aqueous ethanol (25, 50, 60, 70, 80 and 90% v/v) in 1 ml volumes at 1010−11 CFU ml−1. Monitoring the spore endurance through spotting and plating revealed prolonged tolerance (>12 months) at different alcohol levels depending on the organism except in 90% where no survival was observed beyond 2–12 months. Spores of related genera like Paenibacillus and Lysinibacillus also showed long-term ethanol survival. Alcohol tolerance of spore-forming organisms depended on the extent of spores and spore hardiness, which in turn varied with the organism, strain, age of culture, growing conditions and other factors as authenticated with ATCC strains of B. pumilus and B. subtilis. Aqueous 90% ethanol caused instant inactivation of vegetative cells in different spore formers and twelve other non-sporulating Gram-positive and Gram-negative organisms tested. Taking into account both vegetative cells and spores, the appropriate concentration of ethanol as a disinfectant emerged to be 90% followed by absolute ethanol compared with the generally recommended 70–80% level.  相似文献   

12.
Aim: To analyse the dynamic germination of hundreds of individual superdormant (SD) Bacillus subtilis spores. Methods and Results: Germination of hundreds of individual SD B. subtilis spores with various germinants and under different conditions was followed by multifocus Raman microspectroscopy and differential interference contrast microscopy for 12 h and with temporal resolutions of ≤30 s. SD spores germinated poorly with the nutrient germinant used to isolate them and with alternate germinants targeting the germinant receptor (GR) used originally. The mean times following mixing of spores and nutrient germinants to initiate and complete fast release of Ca‐dipicolinic acid (CaDPA) (Tlag and Trelease times, respectively) of SD spores were much longer than those of dormant spores. However, the ΔTrelease times (Trelease?Tlag) of SD spores were essentially identical to those of dormant spores. SD spores germinated almost as well as dormant spores with nutrient germinants targeting GRs different from the one used to isolate the SD spores and with CaDPA that does not trigger spore germination via GRs. Conclusions: Since (i) ΔTrelease times were essentially identical in GR‐dependent germination of SD and dormant spores; (ii) rates of GR‐independent germination of SD and dormant spores were identical; (iii) large increases in Tlag times were the major difference in the GR‐dependent germination of SD as compared with spores; and (iv) higher GR levels are correlated with shorter Tlag times, these results are consistent with the hypothesis that low levels of a GR are the major reason that some spores in a population are SD with germinants targeting this same GR. Significance and Impact of the Study: This study provides information on the dynamic germination of individual SD spores and improves the understanding of spore superdormancy.  相似文献   

13.
The BclA protein is a major component of the outermost layer of spores of a number of bacterial species and Clostridium difficile carries three bclA genes. Using insertional mutagenesis each gene was characterized and spores devoid of these proteins had surface aberrations, reduced hydrophobicity and germinated faster than wild‐type spores. Therefore the BclA proteins were likely major components of the spore surface and when absent impaired the protective shield effect of this outermost layer. Analysis of infection and colonization in mice and hamsters revealed that the 50% infectious dose (ID50) of spores was significantly higher (2‐logs) in the bclA1? mutant compared to the isogenic wild‐type control, but that levels of toxins (A and B) were indistinguishable from animals dosed with wild‐type spores. bclA1? spores germinated faster than wild‐type spores yet mice were less susceptible to infection suggesting that BclA1 must play a key role in the initial (i.e. pre‐spore germination) stages of infection. We also show that the ID50 was higher in mice infected with R20291, a ‘hypervirulent’ 027 strain, that carries a truncated BclA1 protein.  相似文献   

14.
Aim: To investigate the viability, surface characteristics and ability of spores of a Geobacillus sp. isolated from a milk powder production line to adhere to stainless steel surfaces before and after a caustic (NaOH) wash used in clean‐in‐place regimes. Methods and Results: Exposing sessile spores to 1% NaOH at 65°C for 30 min decreased spore viability by two orders of magnitude. The zeta potential of the caustic treated spores decreased from ?20 to ?32 mV and they became more hydrophobic. Transmission electron microscopy revealed that caustic treated spores contained breaks in their spore coat. Under flow conditions, caustic treated spores suspended in 0·1 mol l?1 KCl were shown to attach to stainless steel in significantly greater numbers (4·6 log10 CFU cm?2) than untreated spores (3·6 log10 CFU cm?2). Conclusions: This research suggests that spores surviving a caustic wash will have a greater propensity to attach to stainless steel surfaces. Significance of Study: The practice of recycling caustic wash solutions may increase the risk of contaminating dairy processing surfaces with spores.  相似文献   

15.
Aims: To determine effects of inner membrane lipid composition on Bacillus subtilis sporulation and spore properties. Methods and Results: The absence of genes encoding lipid biosynthetic enzymes had no effect on B. subtilis sporulation, although the expected lipids were absent from spores’ inner membrane. The rate of spore germination with nutrients was decreased c. 50% with mutants that lacked the major cardiolipin (CL) synthase and another enzyme for synthesis of a major phospholipid. Spores lacking the minor CL synthase or an enzyme essential for glycolipid synthesis exhibited 50–150% increases in rates of dodecylamine germination, while spores lacking enzymes for phosphatidylethanolamine (PE), phosphatidylserine (PS) and lysylphosphatidylglycerol (l‐PG) synthesis exhibited a 30–50% decrease. Spore sensitivity to H2O2 and tert‐butylhydroperoxide was increased 30–60% in the absence of the major CL synthase, but these spores’ sensitivity to NaOCl or Oxone? was unaffected. Spores of lipid synthesis mutants were less resistant to wet heat, with spores lacking enzymes for PE, PS or l‐PG synthesis exhibiting a two to threefold decrease and spores of other strains exhibiting a four to 10‐fold decrease. The decrease in spore wet heat resistance correlated with an increase in core water content. Conclusions: Changing the lipid composition of the B. subtilis inner membrane did not affect sporulation, although modest effects on spore germination and wet heat and oxidizing agent sensitivity were observed, especially when multiple lipids were absent. The increases in rates of dodecylamine germination were likely due to increased ability of this compound to interact with the spore’s inner membrane in the absence of some CL and glycolipids. The effects on spore wet heat sensitivity are likely indirect, because they were correlated with changes in core water content. Significance and Impact of the Study: The results of this study provide insight into roles of inner membrane lipids in spore properties.  相似文献   

16.
Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5′-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m−2 of UV-C (200 to 280 nm), −10°C, and a Mars gas mix of CO2 (95.54%), N2 (2.7%), Ar (1.6%), O2 (0.13%), and H2O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.  相似文献   

17.
Aim: Surface‐displayed heterologous antigens on Bacillus subtilis spores can induce the vertebrate animals tested to generate local and systematic immune response through oral immunization. Here, the protection potential of the recombinant spores displaying the VP28 protein of white spot syndrome virus (WSSV) was investigated in the invertebrate crayfish (Cambarus clarkii). Methods and Results: The VP28 protein was successfully displayed on the surfaces of B. subtilis spores using CotB or CotC as a fusion partner. Crayfish were administrated orally by feeding the feed pellets coated with B. subtilis spores for 7 days and immediately followed by WSSV challenge. Oral administration of either spores expressing CotB‐VP28 or CotC‐VP28 resulted in significantly higher relative survival rates of 37·9 and 44·8% compared with the crayfish orally administrated with the spores nonexpressing VP28 (10·3% relative survival rate). When challenges were separately conducted at 7 and 21 days after oral administration, the relative survival rates increased to 46·4 and 50% at 7 days post‐oral administration, but decreased to 30 and 33·3% at 21 days after oral administration. Conclusion: These evidences indicate that the surface‐displayed VP28 on B. subtilis spore could induce protection of crayfish against WSSV via oral administration. Significance and Impact of the Study: This is the first report to use the spore surface display system to deliver orally a heterologous antigen in an aquatic invertebrate animal, crayfish. The results presented here suggest that the spore‐displayed VP28 might be suitable for an oral booster vaccine on prevention of WSSV infection in shrimp farming.  相似文献   

18.
Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.  相似文献   

19.
Aims: To determine the effects of cysteine, cystine, proline and thioproline as sporulation medium supplements on Bacillus subtilis spore resistance to hydrogen peroxide (H2O2), wet heat, and germicidal 254 nm and simulated environmental UV radiation. Methods and Results: Bacillus subtilis spores were prepared in a chemically defined liquid medium, with and without supplementation of cysteine, cystine, proline or thioproline. Spores produced with thioproline, cysteine or cystine were more resistant to environmentally relevant UV radiation at 280–400 and 320–400 nm, while proline supplementation had no effect. Spores prepared with cysteine, cystine or thioproline were also more resistant to H2O2 but not to wet heat or 254‐nm UV radiation. The increases in spore resistance attributed to the sporulation supplements were eliminated if spores were chemically decoated. Conclusions: Supplementation of sporulation medium with cysteine, cystine or thioproline increases spore resistance to solar UV radiation reaching the Earth’s surface and to H2O2. These effects were eliminated if the spores were decoated, indicating that alterations in coat proteins by different sporulation conditions can affect spore resistance to some agents. Significance and Impact of the Study: This study provides further evidence that the composition of the sporulation medium can have significant effects on B. subtilis spore resistance to UV radiation and H2O2. This knowledge provides further insight into factors influencing spore resistance and inactivation.  相似文献   

20.
Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med‐fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well‐known as invertebrate‐active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N‐terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid‐cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号