共查询到20条相似文献,搜索用时 13 毫秒
1.
M. J. Sweet A. Croquer J. C. Bythell 《Proceedings. Biological sciences / The Royal Society》2014,281(1788)
Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle–Koch''s postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study. 相似文献
2.
Belyaeva OV Lee SA Adams MK Chang C Kedishvili NY 《The Journal of biological chemistry》2012,287(12):9061-9071
The enzymes responsible for the rate-limiting step in retinoic acid biosynthesis, the oxidation of retinol to retinaldehyde, during embryogenesis and in adulthood have not been fully defined. Here, we report that a novel member of the short chain dehydrogenase/reductase superfamily, frog sdr16c5, acts as a highly active retinol dehydrogenase (rdhe2) that promotes retinoic acid biosynthesis when expressed in mammalian cells. In vivo assays of rdhe2 function show that overexpression of rdhe2 in frog embryos leads to posteriorization and induction of defects resembling those caused by retinoic acid toxicity. Conversely, antisense morpholino-mediated knockdown of endogenous rdhe2 results in phenotypes consistent with retinoic acid deficiency, such as defects in anterior neural tube closure, microcephaly with small eye formation, disruption of somitogenesis, and curved body axis with bent tail. Higher doses of morpholino induce embryonic lethality. Analyses of retinoic acid levels using either endogenous retinoic acid-sensitive gene hoxd4 or retinoic acid reporter cell line both show that the levels of retinoic acid are significantly decreased in rdhe2 morphants. Taken together, these results provide strong evidence that Xenopus rdhe2 functions as a retinol dehydrogenase essential for frog embryonic development in vivo. Importantly, the retinol oxidizing activity of frog rdhe2 is conserved in its mouse homologs, suggesting that rdhe2-related enzymes may represent the previously unrecognized physiologically relevant retinol dehydrogenases that contribute to retinoic acid biosynthesis in higher vertebrates. 相似文献
3.
Brautigam CA Wynn RM Chuang JL Naik MT Young BB Huang TH Chuang DT 《The Journal of biological chemistry》2011,286(26):23476-23488
The purified mammalian branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain α-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-Å resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other α-ketoacid dehydrogenase complexes. 相似文献
4.
Bjarnsholt T Givskov M 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2007,362(1483):1213-1222
Conventional antibiotics target the growth and the basal life processes of bacteria leading to growth arrest and cell death. The selective force that is inherently linked to this mode of action eventually selects out antibiotic-resistant variants. The most obvious alternative to antibiotic-mediated killing or growth inhibition would be to attenuate the bacteria with respect to pathogenicity. The realization that Pseudomonas aeruginosa, and a number of other pathogens, controls much of their virulence arsenal by means of extracellular signal molecules in a process denoted quorum sensing (QS) gave rise to a new 'drug target rush'. Recently, QS has been shown to be involved in the development of tolerance to various antimicrobial treatments and immune modulation. The regulation of virulence via QS confers a strategic advantage over host defences. Consequently, a drug capable of blocking QS is likely to increase the susceptibility of the infecting organism to host defences and its clearance from the host. The use of QS signal blockers to attenuate bacterial pathogenicity, rather than bacterial growth, is therefore highly attractive, particularly with respect to the emergence of multi-antibiotic resistant bacteria. 相似文献
5.
Bacteria produce a range of proteolytic enzymes. In an attempt to detect and identify bacteria on the basis of their protease activity, a panel of protease substrates was investigated. Peptides conjugated to the fluorophore 7-amino-4-methylcoumarin (AMC) are well-established substrates for measuring protease activity. Although peptide-AMC substrates are generally not specific for a single protease, a unique pattern can be achieved for both highly specific enzymes and those with a broader substrate range by comparing different peptide substrates. The panel of 7 peptide-AMC substrates chosen exhibited a unique pattern for nine microbial proteases. The selected peptides were used to determine protease activity in cultured strains of Pseudomonas aeruginosa and Staphylococcus aureus. A signal pattern obtained with peptides with arginine, lysine, and tyrosine in the P1 position characterized the bacterial protease activities in these samples. The kinetic parameters for the three best substrates for the P. aeruginosa sample were calculated. Further information about substrate specificity was gained by the selective use of protease inhibitors. The results presented show that peptide-AMC substrates provide a simple and sensitive tool to characterize protease activity in microbiological samples and that they have the potential to identify and distinguish different bacterial species. 相似文献
6.
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species. 相似文献
7.
8.
Husain A Sato D Jeelani G Mi-ichi F Ali V Suematsu M Soga T Nozaki T 《The Journal of biological chemistry》2010,285(50):39160-39170
L-cysteine is ubiquitous in all living organisms and is involved in a variety of functions, including the synthesis of iron-sulfur clusters and glutathione and the regulation of the structure, stability, and catalysis of proteins. In the protozoan parasite Entamoeba histolytica, the causative agent of amebiasis, L-cysteine plays an essential role in proliferation, adherence, and defense against oxidative stress; however, the essentiality of this amino acid in the pathways it regulates is not well understood. In the present study, we applied capillary electrophoresis time-of-flight mass spectrometry to quantitate charged metabolites modulated in response to L-cysteine deprivation in E. histolytica, which was selected as a model for examining the biological roles of L-cysteine. L-cysteine deprivation had profound effects on glycolysis, amino acid, and phospholipid metabolism, with sharp decreases in the levels of L-cysteine, L-cystine, and S-adenosylmethionine and a dramatic accumulation of O-acetylserine and S-methylcysteine. We further demonstrated that S-methylcysteine is synthesized from methanethiol and O-acetylserine by cysteine synthase, which was previously considered to be involved in sulfur-assimilatory L-cysteine biosynthesis. In addition, L-cysteine depletion repressed glycolysis and energy generation, as it reduced acetyl-CoA, ethanol, and the major nucleotide di- and triphosphates, and led to the accumulation of glycolytic intermediates. Interestingly, L-cysteine depletion increased the synthesis of isopropanolamine and phosphatidylisopropanolamine, and it was confirmed that their increment was not a result of oxidative stress but was a specific response to L-cysteine depletion. We also identified a pathway in which isopropanolamine is synthesized from methylglyoxal via aminoacetone. To date, this study represents the first case where L-cysteine deprivation leads to drastic changes in core metabolic pathways, including energy, amino acid, and phospholipid metabolism. 相似文献
9.
Lei B 《World journal of biological chemistry》2010,1(9):286-290
Benfang Lei's laboratory conducts research on pathogenesis of human pathogen Group A Streptococcus (GAS) and horse pathogen Streptococcus equi (S. equi). His current research focuses on heme acquisition in Gram-positive pathogens and molecular mechanism of GAS and S. equi pathogenesis. Heme is an important source of essential iron for bacterial pathogens. Benfang Lei and colleagues identified the first cell surface heme-binding protein in Gram-positive pathogens and the heme acquisition system in GAS, demonstrated direct heme transfer from one protein to another, demonstrated an experimental pathway of heme acquisition by the Staphylococcus aureus Isd system, elucidated the activated heme transfer mechanism, and obtained evidence for a chemical mechanism of direct axial ligand displacement during the Shp-to-HtsA heme transfer reaction. These findings have considerably contributed to the progress that has been made over recent years in understanding the heme acquisition process in Gram-positive pathogens. Pathogenesis of GAS is mediated by an abundance of extracellular proteins, and pathogenic role and functional mechanism are not known for many of these virulence factors. Lei laboratory identified a secreted protein of GAS as a CovRS-regulated virulence factor that is a protective antigen and is critical for GAS spreading in the skin and systemic dissemination. These studies may lead to development of novel strategies to prevent and treat GAS infections. 相似文献
10.
Melissa Garren Kwangmin Son Jean-Baptiste Raina Roberto Rusconi Filippo Menolascina Orr H Shapiro Jessica Tout David G Bourne Justin R Seymour Roman Stocker 《The ISME journal》2014,8(5):999-1007
Diseases are an emerging threat to ocean ecosystems. Coral reefs, in particular, are experiencing a worldwide decline because of disease and bleaching, which have been exacerbated by rising seawater temperatures. Yet, the ecological mechanisms behind most coral diseases remain unidentified. Here, we demonstrate that a coral pathogen, Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target the mucus of its coral host, Pocillopora damicornis. A primary driver of this response is the host metabolite dimethylsulfoniopropionate (DMSP), a key element in the global sulfur cycle and a potent foraging cue throughout the marine food web. Coral mucus is rich in DMSP, and we found that DMSP alone elicits chemotactic responses of comparable intensity to whole mucus. Furthermore, in heat-stressed coral fragments, DMSP concentrations increased fivefold and the pathogen''s chemotactic response was correspondingly enhanced. Intriguingly, despite being a rich source of carbon and sulfur, DMSP is not metabolized by the pathogen, suggesting that it is used purely as an infochemical for host location. These results reveal a new role for DMSP in coral disease, demonstrate the importance of chemical signaling and swimming behavior in the recruitment of pathogens to corals and highlight the impact of increased seawater temperatures on disease pathways. 相似文献
11.
We report the genome sequence of a healthcare-associated MRSA type ST239 clone isolated from a patient with septicemia in Malaysia. This clone typifies the characteristics of ST239 lineage, including resistance to multiple antibiotics and antiseptics. 相似文献
12.
AL Lovering MC Gretes SS Safadi F Danel L de Castro MG Page NC Strynadka 《The Journal of biological chemistry》2012,287(38):32096-32102
Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-resistant strain of S. aureus afflicting hospitals and communities worldwide. Of greatest concern is its development of resistance to current last-line-of-defense antibiotics; new therapeutics are urgently needed to combat this pathogen. Ceftobiprole is a recently developed, latest generation cephalosporin and has been the first to show activity against MRSA by inhibiting essential peptidoglycan transpeptidases, including the β-lactam resistance determinant PBP2a, from MRSA. Here we present the structure of the complex of ceftobiprole bound to PBP2a. This structure provides the first look at the molecular details of an effective β-lactam-resistant PBP interaction, leading to new insights into the mechanism of ceftobiprole efficacy against MRSA. 相似文献
13.
Mehjabeen Hossain Dil Umme Salma Chowdhury Jacy Farhana Mohammed Touaha Akbar Ananya Chakraborty Shamima Islam Adnan Mannan 《Bioinformation》2013,9(4):187-192
Staphylococcus aureus is a gram positive bacterium, responsible for both community-acquired and hospital-acquired infection,
resulting in a mortality rate of 39%. 43.2% resistance to methicilin and emerging resistance to Fluroquinolone and Oxazolidinone,
have evoked the necessity of the establishment of alternative and effective therapeutic approach to treat this bacteria. In this
computational study, various database and online software are used to determine some specific targets of Staphylococcus aureus
N315 other than those used by Penicillin, Quinolone and Oxazolidinone. For this purpose, among 302 essential proteins, 101 nonhomologous
proteins were accrued and 64 proteins which are unique in several metabolic pathways of S. aureus were isolated by
using metabolic pathway analysis tools. Furthermore, 7 essentially unique enzymes involved in exclusive metabolic pathways were
revealed by this research, which can be potential drug target. Along with these important enzymes, 15 non-homologous proteins
located on membrane were identified, which can play a vital role as potential therapeutic targets for the future researchers. 相似文献
14.
The activity of the pyruvate dehydrogenase complex has long been determined in some laboratories by coupling the production of acetyl-coenzyme A (acetyl-CoA) to the acetylation of 4-aminoazobenzene-4'-sulfonic acid by arylamine N-acetyltransferase. The assay has some advantages, but its use has been limited by the need for large amounts of arylamine N-acetyltransferase. Here we report production of recombinant chicken liver arylamine N-acetyltransferase and optimization of its use in miniaturized assays for the pyruvate dehydrogenase complex and its kinase. 相似文献
15.
Staphylococcus aureus (S. aureus) has entered the spotlight as a globally pervasive drug-resistant pathogen. While historically associated exclusively with hospital-acquired infections in immunocompromised hosts, the methicillin-resistant form of S. aureus has been spreading throughout communities since the 1990s. Indeed, it has now become a common household term: MRSA. S. aureus has developed numerous mechanisms of virulence and strategies to evade the human immune system, including a host of surface proteins, secreted enzymes, and toxins. In hospital intensive care units, the proportion of MRSA-related S. aureus infections has increased strikingly from just 2 percent in 1974 to 64 percent in 2004. Its presence in the community has been rising similarly, posing a significant public health burden. The growing incidence of MRSA unfortunately has been met with dwindling efforts to develop new, more effective antibiotics. The continued emergence of resistant strains of bacteria such as MRSA demands an urgent revival of the search for new antibiotics. 相似文献
16.
The Plasmodium mitochondrial electron transport chain has received considerable attention as a potential target for new antimalarial drugs. Atovaquone, a potent inhibitor of Plasmodium cytochrome bc(1), in combination with proguanil is recommended for chemoprophylaxis and treatment of malaria. The type II NADH:ubiquinone oxidoreductase (NDH2) is considered an attractive drug target, as its inhibition is thought to lead to the arrest of the mitochondrial electron transport chain and, as a consequence, pyrimidine biosynthesis, an essential pathway for the parasite. Using the rodent malaria parasite Plasmodium berghei as an in vivo infection model, we studied the role of NDH2 during Plasmodium life cycle progression. NDH2 can be deleted by targeted gene disruption and, thus, is dispensable for the pathogenic asexual blood stages, disproving the candidacy for an anti-malarial drug target. After transmission to the insect vector, NDH2-deficient ookinetes display an intact mitochondrial membrane potential. However, ndh2(-) parasites fail to develop into mature oocysts in the mosquito midgut. We propose that Plasmodium blood stage parasites rely on glycolysis as the main ATP generating process, whereas in the invertebrate vector, a glucose-deprived environment, the malaria parasite is dependent on an intact mitochondrial respiratory chain. 相似文献
17.
Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species 总被引:7,自引:0,他引:7 下载免费PDF全文
Smith KJ Petit CM Aubart K Smyth M McManus E Jones J Fosberry A Lewis C Lonetto M Christensen SB 《Protein science : a publication of the Protein Society》2003,12(2):349-360
Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules. 相似文献
18.
Soong G Martin FJ Chun J Cohen TS Ahn DS Prince A 《The Journal of biological chemistry》2011,286(41):35891-35898
Staphyococcus aureus and especially the epidemic methicillin-resistant S. aureus strains cause severe necrotizing pneumonia. The mechanisms whereby these organisms invade across the mucosal epithelial barrier to initiate invasive infection are not well understood. Protein A (SpA), a highly conserved and abundant surface protein of S. aureus, activates TNF receptor 1 and EGF receptor (EGFR) signaling cascades that can perturb the cytoskeleton. We demonstrate that wild-type S. aureus, but not spa mutants, invade across polarized airway epithelial cell monolayers via the paracellular junctions. SpA stimulated a RhoA/ROCK/MLC cascade, resulting in the contraction of the cytoskeleton. SpA(+) but not SpA(-) mutants stimulated activation of EGFR and along with subsequent calpain activity cleaved the membrane-spanning junctional proteins occludin and E-cadherin, facilitating staphylococcal transmigration through the cell-cell junctions. Treatment of polarized human airway epithelial monolayers with inhibitors of ROCK, EGFR, MAPKs, or calpain prevented staphylococcal penetration through the monolayers. In vivo, blocking calpain activity impeded bacterial invasion into the lung parenchyma. Thus, S. aureus exploits multiple receptors available on the airway mucosal surface to facilitate invasion across epithelial barriers. 相似文献
19.
Zabdi González-Chávez Viridiana Olin-SandovalRafael Moreno-Sánchez Emma Saavedra 《Biochimica et Biophysica Acta (BBA)/General Subjects》2015
Background
The principal oxidative-stress defense in the human parasite Trypanosoma cruzi is the tryparedoxin-dependent peroxide detoxification pathway, constituted by trypanothione reductase (TryR), tryparedoxin (TXN), tryparedoxin peroxidase (TXNPx) and tryparedoxin-dependent glutathione peroxidase A (GPxA). Here, Metabolic Control Analysis (MCA) was applied to quantitatively prioritize drug target(s) within the pathway by identifying its flux-controlling enzymes.Methods
The recombinant enzymes were kinetically characterized at physiological pH/temperature. Further, the pathway was in vitro reconstituted using enzyme activity ratios and fluxes similar to those observed in the parasites; then, enzyme and substrate titrations were performed to determine their degree of control on flux. Also, kinetic characterization of the whole pathway was performed.Results
Analyses of the kinetic properties indicated that TXN is the less efficient pathway enzyme derived from its high Kmapp for trypanothione and low Vmax values within the cell. MCA established that the TXN–TXNPx and TXN–GPxA redox pairs controlled by 90–100% the pathway flux, whereas 10% control was attained by TryR. The Kmapp values of the complete pathway for substrates suggested that the pathway flux was determined by the peroxide availability, whereas at high peroxide concentrations, flux may be limited by NADPH.Conclusion
These quantitative kinetic and metabolic analyses pointed out to TXN as a convenient drug target due to its low catalytic efficiency, high control on the flux of peroxide detoxification and role as provider of reducing equivalents to the two main peroxidases in the parasite.General Significance
MCA studies provide rational and quantitative criteria to select enzymes for drug-target development. 相似文献20.
Genome sequencing projects has led to an explosion of large amount of gene products in which many are of hypothetical proteins
with unknown function. Analyzing and annotating the functions of hypothetical proteins is important in Staphylococcus aureus
which is a pathogenic bacterium that cause multiple types of diseases by infecting various sites in humans and animals. In this
study, ten hypothetical proteins of Staphylococcus aureus were retrieved from NCBI and analyzed for their structural and functional
characteristics by using various bioinformatics tools and databases. The analysis revealed that some of them possessed functionally
important domains and families and protein-protein interacting partners which were ABC transporter ATP-binding protein,
Multiple Antibiotic Resistance (MAR) family, export proteins, Helix-Turn-helix domains, arsenate reductase, elongation factor,
ribosomal proteins, Cysteine protease precursor, Type-I restriction endonuclease enzyme and plasmid recombination enzyme
which might have the same functions in hypothetical proteins. The structural prediction of those proteins and binding sites
prediction have been done which would be useful in docking studies for aiding in the drug discovery. 相似文献