首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During testis development, fetal Leydig cells increase their population from a pool of progenitor cells rather than from proliferation of a differentiated cell population. However, the mechanism that regulates Leydig stem cell self-renewal and differentiation is unknown. Here, we show that blocking Notch signaling, by inhibiting gamma-secretase activity or deleting the downstream target gene Hairy/Enhancer-of-split 1, results in an increase in Leydig cells in the testis. By contrast, constitutively active Notch signaling in gonadal somatic progenitor cells causes a dramatic Leydig cell loss, associated with an increase in undifferentiated mesenchymal cells. These results indicate that active Notch signaling restricts fetal Leydig cell differentiation by promoting a progenitor cell fate. Germ cell loss and abnormal testis cord formation were observed in both gain- and loss-of-function gonads, suggesting that regulation of the Leydig/interstitial cell population is important for male germ cell survival and testis cord formation.  相似文献   

2.
We previously reported that atrial natriuretic factor (ANF) stimulates pancreatic secretion through NPR-C receptors coupled to PLC and potentiates secretin response without affecting cAMP levels. In the present study we sought to establish the intracellular signaling mechanism underlying the interaction between both peptides. In isolated pancreatic acini 100 nM ANF abolished cAMP accumulation evoked by any dose of secretin. Lower doses of ANF (1 fM, 1 pM, 1 and 10 nM) dose dependently reduced EC50 secretin-evoked cAMP. Although ANF failed to affect cAMP stimulated by amthamine (selective H2 agonist) or isoproterenol (beta-adrenergic agonist), it abolished VIP-induced cAMP formation. ANF inhibitory effect was prevented by U-73122 (PLC inhibitor) and GF-109203X (PKC inhibitor) but unaltered by PKG and nitric oxide synthase inhibition, supporting that the PLC/PKC pathway mediated the effect. ANF response was mimicked by cANP (4-23 amide) and abolished by pertussis toxin, strongly supporting NPR-C receptor activation. In vivo studies showed that ANF at 0.5 microg x kg(-1) x h(-1) enhanced secretion stimulated by 1 U x kg(-1) x h(-1) secretin but at 1 and 2 microg x kg(-1) x h(-1) it abolished secretin response. However, ANF at such doses failed to modify the secretion evoked by carbachol or CCK. Present results show that ANF negatively modulated secretin secretory response and intracellular signaling through the activation of NPR-C receptors coupled to the PLC/PKC pathway. Furthermore, the finding that ANF also inhibited VIP-evoked cAMP supports a selective modulation of class II G-protein coupled receptors by ANF. Present findings suggest that ANF may play a protective role by reducing secretin response to avoid overstimulation.  相似文献   

3.
4.
《Cell Stem Cell》2021,28(11):2009-2019.e4
  1. Download : Download high-res image (231KB)
  2. Download : Download full-size image
  相似文献   

5.
Lin HY  Kao CH  Lin KM  Kaartinen V  Yang LT 《PloS one》2011,6(1):e15842

Background

Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.

Methodology and Principal Findings

We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.

Significance

our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells.  相似文献   

6.
7.
8.
Myosin phosphatase targeting subunit 1 (Mypt1) is the regulatory subunit of myosin phosphatase which dephosphorylates the light chain of myosin II to inhibit its contraction. Although biochemical properties of Mypt1 have been characterized in detail, its biological functions in organisms are not well understood. The zebrafish mypt1 sq181 allele was found defective in the ventral pancreatic bud and extrapancreatic duct development, resulting in dysplasia of exocrine pancreas. In mypt1 sq181 mutant, the early growth of the ventral pancreatic bud was initiated but failed to expand due to impaired cell proliferation and increased cell apoptosis. As Mypt1 is essential for cell migration, the loss‐of‐function of Mypt1 in the mutant disrupted the lateral plate mesoderm migration during gut looping, therefore, altering the Bmp2a expression pattern within it, and eventually leading to impaired Bmp signaling in the adjacent exocrine pancreas. Overexpression of bmp2a could rescue the development of exocrine pancreas, suggesting that the impaired Bmp2a signaling is responsible for the pancreatic development defects. Bmp2a has been reported to promote the early specification of the ventral pancreatic bud, and our study reveals that it continues to serve as a cell proliferation/survival signal to ensure pancreatic bud growth properly in zebrafish.  相似文献   

9.
In the Drosophila larval brain, type I and type Ⅱ neuroblasts(NBs) undergo a series of asymmetric divisions which give rise to distinct progeny lineages. The intermediate neural progenitors(INPs) exist only in type Ⅱ NB lineages. In this study, we reveal a novel function of Inscuteable(Insc) that acts to maintain type I NB lineage identity. In insc type I NB clones of mosaic analyses with a repressible cell marker(MARCM), the formation of extra Deadpan(Dpn)tNB-like and GMC-like cells is observed. The lack of Insc leads to the defective localization and segregation of Numb during asymmetric cell division. By the end of cytokinesis, this results in insufficient Numb in ganglion mother cells(GMCs). The formation of extra Deadpan(Dpn)tcells in insc clones is prevented by the attenuation of Notch activity. This suggests that Insc functions through the Numb/Notch signaling pathway. We also show that in the absence of Insc in type I NB lineages, the cellular identity of GMCs is altered where they adopt an INP-like cell fate as indicated by the initiation of Dpn expression accompanied by a transient presence of Earmuff(Erm).These INP-like cells have the capacity to divide multiple times. We conclude that Insc is necessary for the maintenance of type I NB lineage identity. Genetic manipulations to eliminate most type I NBs with overproliferating type Ⅱ NBs in the larval brain lead to altered circadian rhythms and defective phototaxis in adult flies. This indicates that the homeogenesis of NB lineages is important for the adult's brain function.  相似文献   

10.
To investigate the precise role of Notch/Rbp-j signaling in the pancreas, we inactivated Rbp-j by crossing Rbp-j floxed mice with Pdx.cre or Rip.cre transgenic mice. The loss of Rbp-j at the initial stage of pancreatic development induced accelerated alpha and PP cell differentiation and a concomitant decrease in the number of Neurogenin3 (Ngn3)-positive cells at E11.5. Then at E15, elongated tubular structures expressing ductal cell markers were evident; however, differentiation of acinar and all types of endocrine cells were reduced. During later embryonic stages, compensatory acinar cell differentiation was observed. The resultant mice exhibited insulin-deficient diabetes with both endocrine and exocrine pancreatic hypoplasia. In contrast, the loss of Rbp-j specifically in beta cells did not affect beta cell number and function. Thus, our analyses indicate that Notch/Rbp-j signaling prevents premature differentiation of pancreatic progenitor cells into endocrine and ductal cells during early development of the pancreas.  相似文献   

11.
Summary The adrenergic nerves in the pancreas of mice, rats, guinea-pigs, rabbits, and cats were investigated with the fluorescence method of Falck and Hillarp. The relations between the adrenergic fibres and the vessels were studied by the injection of india ink into the vessels.Besides the normal manifestation of adrenergic fibres at the large vessels, some vessels of capillary size were also accompanied by adrenergic fibres. These fibres had a very weak fluorescence, and showed up regularly only when the animal had been treated with Nialamide and L-DOPA or dopamine to increase the catecholamine content of the adrenergic fibres. The weakness of the fluorescence is perhaps due to low transmitter concentration or to small size of the nerve fibres, or to both. A rough estimate indicated that either the transmitter concentration of the nerve fibre is at least approximately 100 times below that seen in adrenergic nerves in other tissues, or that the radius of the varicosities of the nerve fibres is less than 0.2 . Neither alternative has previously been recognized.The secretory acini of the pancreas seem to lack a direct adrenergic supply. In the intrapancreatic ganglia, non-fluorescent nerve cells were reached by adrenergic terminals. No adrenergic nerve cells were detected in the pancreas of rats and cats. Small intensely fluorescent catecholamine-containing cells were observed in connexion with the intrapancreatic ganglia of rats.The research reported in this document has been sponsored by the Air Force Office of Scientific Research under grant AF EOAR 67-15 through the European Office of Aerospace Research (OAR), United States Air Force, by the United States Public Health Service (grant NB 06701-01) by the Swedish Medical Research Council (project B 67-12X-712-02A), and by the Faculty of Medicine, University of Lund, Sweden.  相似文献   

12.
Diabetes and carbohydrate intolerance can occur in pancreatitis. Although one-half of patients with acute pancreatitis will have some evidence of glucose intolerance during their acute illness, few will require insulin administration on either a short- or long-term basis. The diabetes seen in acute pancreatitis is likely due to a combination of factors, including alerted insulin secretion, increased glucagon release, and decreased glucose utilization by the liver and peripheral tissue. Chronic pancreatitis is often associated with diabetes mellitus, with the incidence as high as 70 percent when pancreatic calcification is present. These patients tend to be very sensitive to the effects of insulin and hypoglycemia. This is probably secondary to concurrent hepatic disease, malnutrition, and a relative decrease in glucagon reserves. The diabetes seen in chronic pancreatitis is associated with decreased insulin production. Finally, although the endocrine pancreas may influence the exocrine gland through a portal system, primary diabetes mellitus probably does not result in clinically significant alterations in pancreatic exocrine function.  相似文献   

13.
Melanoblasts (Mbs) are thought to be strictly regulated by cell-cell interactions with epidermal keratinocytes, although the precise molecular mechanism of the regulation has been elusive. Notch signaling, whose activation is mediated by cell-cell interactions, is implicated in a broad range of developmental processes. We demonstrate the vital role of Notch signaling in the maintenance of Mbs, as well as melanocyte stem cells (MSCs). Conditional ablation of Notch signaling in the melanocyte lineage leads to a severe defect in hair pigmentation, followed by intensive hair graying. The defect is caused by a dramatic elimination of Mbs and MSCs. Furthermore, targeted overexpression of Hes1 is sufficient to protect Mbs from the elimination by apoptosis. Thus, these data provide evidence that Notch signaling, acting through Hes1, plays a crucial role in the survival of immature Mbs by preventing initiation of apoptosis.  相似文献   

14.
FGF10 plays an important role in the morphogenesis of several tissues by control of mesenchymal-to-epithelial signaling. In the pancreas, mesenchymal FGF10 is required to maintain the Pdx1-expressing epithelial progenitor cell population, and in the absence of FGF10 signaling, these cells fail to proliferate. Ectopic expression of FGF10 in the pancreatic epithelium caused increased proliferation of pancreatic progenitor cells and abrogation of pancreatic cell differentiation of all cell types. A hyperplastic pancreas consisting of undifferentiated cells expressing Pdx1, Nkx6.1, and cell adhesion markers normally characterizing early pancreatic progenitor cells resulted. Differentiation was attenuated even as proliferation of the pancreatic cells slowed during late gestation, suggesting that the trophic effect of FGF10 was independent of its effects upon cell differentiation. The FGF10-positive pancreatic cells expressed Notch1 and Notch2, the Notch-ligand genes Jagged1 and Jagged2, as well as the Notch target gene Hes1. This activation of Notch is distinct from the previously recognized mechanism of lateral inhibition. These data suggest that FGF10 signaling serves to integrate cell growth and terminal differentiation at the level of Notch activation, revealing a novel second role of this key signaling system during pancreatic development.  相似文献   

15.
《Developmental cell》2023,58(12):1052-1070.e10
  1. Download : Download high-res image (102KB)
  2. Download : Download full-size image
  相似文献   

16.
Summary The two calcium antagonistic agents lanthanum and tetracaine cause severe disturbances in the secretory process of the exocrine pancreas, including inhibition of the rate of protein synthesis and exocytosis. The former effect resulted mainly from the inhibition of amino acid transport. Lanthanum in a concentration up to 1 mM inhibited transport of different species of amino acids in an unspecific way whereas tetracaine interfered specifically with the Na+-dependent transport system for neutral amino acids (14C--amino-isobutyric acid). Na+-independent transport of neutral amino acids (3H-leucine) was not affected. Transport inhibition was correlated to the activity of the Na+, K+-ATPase system which was measured in isolated plasma membrane fractions. At higher concentrations (5–10 mM) some uptake of lanthanum into the cells by limited endocytosis was observed. At lower concentrations lanthanum seemed to bind exclusively to certain components of the plasma membrane, mainly at the lateral and basal cell surface. Even at a concentration of 5–10 mM, no binding to the apical surface occurred. Similarly, no binding of lanthanum was observed to the limiting membrane of isolated zymogen granules, while mitochondria, contained in the same fraction, showed considerable binding affinity. The action of lanthanum and tetracaine on membrane carrier systems did not affect the interior organization of the plasma membrane. Particle density and distribution in freeze-fracture replicas as well as the submembrane microfilamentous-microtubular system and the junctional elements remained unaffected.Supported by a grant from the Deutsche Forschungsgemeinschaft (Ke 113/10). The expert technical assistance of Miss Helga Hollerbach and Miss Hiltraud Hosser and the editorial help of Mrs. Gisela Lesch is gratefully acknowledged  相似文献   

17.
Summary Amino acid transport and incorporation have been studied in vitro in rat pancreatic lobules after maximal and supramaximal hormonal stimulation with caerulein. Incorporation into proteins was increased already after 30 and 120 min of maximal stimulation, but was decreased after the infusion of a supramaximal dose. Uptake of neutral amino acids was monitored using labeled leucine and -aminoisobutyric acid (AIB). In the case of leucine the free pool was consistently reduced after maximal stimulation, while supramaximal doses led to an increase which could be potentiated by the addition of 2mM tetracaine. Using AIB, a significant increase in the intracellular pool was observed after maximal stimulation, conversely a decrease after supramaximal stimulation. Release of labeled leucine and AIB from preloaded lobules during incubation in the cold was significantly reduced after maximal secretory stimulation, but was found enhanced by 200 to 300 percent after supramaximal stimulation. No fine structural alterations at junctional complexes or at both the lateral and luminal plasma membranes were observed after maximal stimulation except an increased number of exocytotic figures at the luminal face. However, supramaximal stimulation led to progressive rarefaction of the tight junctional network and disintegration of the gap junctions. Concomitantly, an equal distribution of membrane particles on both faces of the plasma membrane together with a random occurrence of exocytotic figures were observed.Supported by a grant from the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (SFB 122, project C 5). Dedicated to Professor Dr. Gerhard Petry, Marburg, on the occasion of his 65th birthday  相似文献   

18.
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.  相似文献   

19.
20.
Notch signaling in cancer   总被引:3,自引:0,他引:3  
The evolutionarily conserved developmental pathway driven by Notch receptors and ligands has acquired multiple post-natal homeostatic functions in vertebrates. Potential roles in human physiology and pathology are being studied by an increasingly large number of investigators. While the canonical Notch signaling pathway is deceptively simple, the consequences of Notch activation on cell fate are complex and context-dependent. The manner in which other signaling pathways cross-talk with Notch signaling appears to be extraordinarily complex. Recent observations have demonstrated the importance of endocytosis, multiple ubiquitin ligases, non-visual beta-arrestins and hypoxia in modulating Notch signaling. Structural biology is shedding light on the molecular mechanisms whereby Notch interacts with its nuclear partners. Genomics is slowly unraveling the puzzle of Notch target genes in several systems. At the same time, interest in modulating Notch signaling for medical purposes has dramatically increased. Over the last few years we have learned much about Notch signaling in cancer, immune disorders, neurological disorders and most recently, stroke. The role of Notch signaling in normal and transformed stem cells is under intense investigation. Some Notch-modulating drugs are already in clinical trials, and others at various stages of development. This review will focus on the most recent findings on Notch signaling in cancer and discuss their potential clinical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号