首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three red-pink pigmented strains, designated A1-12(T), A2-50A(T) and A2-91(T), were recovered from two different sites in a uranium mine. For all strains, the optimum growth temperature was 25°C, the optimum pH was 6.0-6.5 and the DNA G+C contents were between 60 and 63.4 mol%. The major respiratory quinone was menaquinone 7 (MK-7) and the fatty acid profiles contained iso- and anteiso-branched C15 fatty acids, summed feature 3 (16:1 ω6c and/or ω7c and/or 15:0 iso 2-OH), summed feature 4 (17:1 anteiso B and/or iso I) and the unsaturated fatty acid 16:1 ω5c as the major components. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented three distinct branches within the family Flexibacteraceae most closely related to the members of the genus Hymenobacter. Strain A1-12(T) formed a distinct phylogenetic line along with H. rigui KCTC 12533(T) and they shared approximately 98.9% 16S rRNA gene sequence similarity. However, these two strains shared only 14.7% pairwise similarity in their genomic DNA. Strains A2-50A(T) and A2-91(T) formed two distinct lineages, related to the species H. soli KCTC 12607(T), sharing about 95.5% 16S rRNA gene sequence similarity between themselves, and 88.3 and 92.0% with other members of the genus Hymenobacter. Based on the phylogenetic analysis and physiological and biochemical characteristics, these isolates were considered to represent three novel species for which we propose the names Hymenobacter perfusus for strain A1-12(T) (=CIP 110166=LMG 26000), Hymenobacter flocculans for strain A2-50A(T) (=CIP 110139=LMG 25699) and Hymenobacter metalli for strain A2-91(T) (=CIP 110140=LMG 25700).  相似文献   

2.
A Gram-negative, rod-shaped, non-spore-forming and motile bacterial strain TR7-01(T) was isolated from a compost soil in South Korea and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TR7-01(T) belonged to the genus Hydrogenophaga within the class Betaproteobacteria. Strain TR7-01(T) exhibited 16S rRNA gene sequence similarity values of 95.0-98.3% to members of the genus Hydrogenophaga: Hydrogenophaga bisanensis DSM12412(T) (98.3%), Hydrogenophaga flava DSM 619(T) (97.1%), Hydrogenophaga pseudoflava ATCC 33668(T) (96.8%), Hydrogenophaga intermedia S1(T) (96.4%), Hydrogenophaga atypica BSB 41.8(T) (95.8%), Hydrogenophaga defluvii BSB 9.5(T) (95.7%), Hydrogenophaga palleronii CCUG 20334(T) (95.6%), Hydrogenophaga caeni EMB71(T) (95.4%) and Hydrogenophaga taeniospiralis ATCC 49743(T) (95.0%). Chemotaxonomic data revealed that strain TR7-01(T) possesses ubiquinone Q-8, the G+C content was 69.9 mol%, and the predominant fatty acids were 16 : 1 ω7c/15 : 0 iso 2OH, 18 : 1 ω7c/ω9t/ω12t and C(16:0), all of which corroborated our assignment of the strain to the genus Hydrogenophaga. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that strain TR7-01(T) represents a distinct species. Based on these data, TR7-01(T) (= KCTC 12203(T) = DSM 18117(T)) should be classified as a novel Hydrogenophaga species, for which the name Hydrogenophaga temperata sp. nov. has been proposed.  相似文献   

3.
Three Gram-negative, motile, coccoid- and ellipsoidal-shaped, non-pigmented, chemoheterotrophic bacteria, designated strains SA4-31, SA4-46 and SA4-48(T), were isolated from Lake Saroma in Japan and subjected to a polyphasic taxonomical study. 16S rRNA gene sequence analysis revealed that the novel isolates could be affiliated to the family Pseudoalteromonadaceae of the order Alteromonadales. The strains shared approximately 99.7-100% sequence similarity with each other and showed 89.5-93.2% similarity with members of the family Pseudoalteromonadaceae with validly published names. The DNA-DNA relatedness among the strains SA 4-31, SA 4-46 and SA 4-48(T) was higher than 80%, a value that is accepted as a phylogenetic definition of one species. The DNA G+C contents of the three strains were 38.7-39.6 mol%. The major isoprenoid quinone was Q-8 and C16:0, C16:1 ω7c, C18:1 ω7c and C12:1 3OH were the major fatty acids. Based on the evidence from the polyphasic taxonomical study, it was concluded that the three strains should be classified as representing a new genus and species of the family Pseudoalteromonadaceae, for which the name Psychrosphaera saromensis gen. nov., sp. nov. (type strain SA4-48(T) =NBRC 107123(T)= KCTC 23240(T)) is proposed.  相似文献   

4.
Strain BS6(T), a Gram-positive non-motile bacterium, was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain BS6T belonged to the family Propionibacteriaceae in the class Actinobacteria. Strain BS6(T) showed the highest 16S rRNA gene sequence similarity with Microlunatus soli CC-012602(T) (98.6%) and high sequence similarities with Microlunatus species (94.5-98.6%). Chemotaxonomic data revealed that the predominant fatty acids were anteiso-C(17:0), anteiso-C(15:0), summed feature 8 (C(18:1) ω7c/ω6c), and iso-C(16:0). The cell wall peptidoglycan contained (LL)-diaminopimelic acid, and the major polar lipids were diphosphatidylglycerol, and phosphatidylglycerol. Based on these data, BS6(T) (=KCTC 19858(T) =JCM 17661(T) =CCARM 9244(T) =KEMC 9004-079(T)) should be classified as a type strain of a novel species, for which the name Microlunatus terrae sp. nov. is proposed.  相似文献   

5.
A Gram-negative, pink-pigmented, non-spore-forming rod shaped, methanol-utilizing bacterium, strain YIM 48816(T), was isolated from forest soil collected from Sichuan province, China. Strain YIM 48816(T) can grow at 4-37 °C, pH 5.0-7.0 and 0% NaCl (w/v). Based on 16S rRNA gene sequence similarity studies, it belonged to the genus Methylobacterium, and formed a phyletic line. The 16S rRNA gene sequence similarities were 96.2% to Methylobacterium mesophilicum DSM 1708(T) and 96.0% to Methylobacterium brachiatum DSM 19569(T), and the phylogenetic similarities to all other Methylobacterium species with validly published names were less than 96.0%. The major menaquinones detected were Q-10 (97.14%) and Q-9 (2.86%). The major fatty acids were C18:1 ω7c (80.84%). The DNA G + C content was 66.2 mol%. It is apparent from the genotypic and phenotypic data that strain YIM 48816(T) belongs to a novel species of the genus Methylobacterium, for which the name Methylobacterium soli sp. nov. is proposed. The type strain is YIM 48816(T) (CCTCC AA 208027(T) = KCTC 22810(T)).  相似文献   

6.
A strictly aerobic, Gram-negative, rod-shaped bacterium (strain CC-SAMT-1(T)) showing gliding motility was isolated from coastal seawater of China Sea, Taiwan. Strain CC-SAMT-1(T) synthesizes all-trans-zeaxanthin (6.5 ± 0.5 mg g(-1) dry biomass) as a predominant xanthophyll carotenoid. As determined by 16S rRNA gene analysis, strain CC-SAMT-1(T) shared very high sequence similarity to the members of the genera Mariniflexile (96.1-95.3%) and Gaetbulibacter (96.0-95.9%); however, it formed a distinct phyletic lineage distantly associated with Mariniflexile species. Polar lipid profile constitutes phosphatidylethanolamine, four unidentified aminolipids, four unidentified lipids, and an unidentified glycolipid. Strain CC-SAMT-1(T) contains excessive unidentified aminolipid lipid (AL2-4) and glycolipid contents, and therefore clearly distinct from Mariniflexile species. Major fatty acids (> 5% of total fatty acids) were iso-C(15:0) (14.8%), iso-C(17:0) 3-OH (11.8%), iso-C(15:1) G (10.6%), anteiso-C(15:0) (9.7%), C(16:0) (8.1%), iso-C(16:0) 3-OH (7.9%), iso-C(15:0) 3-OH (7.5%), and summed feature 3 (containing C(16:1) ω6c and/or C(16:1) ω7c) (7.5%). Menaquinone-6 (MK-6) was major respiratory quinone. DNA G+C content was 33.7 mol%. Based on polyphasic taxonomy, strain CC-SAMT-1(T) represents a novel genus and species in the family Flavobacteriaceae for which the name Siansivirga zeaxanthinifaciens gen. nov., sp. nov. is proposed. The type strain is CC-SAMT-1(T) (= BCRC 80315(T) = JCM 17682(T)).  相似文献   

7.
A taxonomic study of three aerobic, Gram-negative, non-pigmented, non-motile rod-shaped bacterial strains, designated KMM 9008, KMM 9017, and KMM 9024(T), which were isolated from a sandy sediment sample collected from the Sea of Japan seashore, was undertaken. The DNA-DNA hybridization values of 88-96% obtained between novel strains confirm their assignment to the same species. An analysis of the nearly complete 16S rRNA gene sequences showed that the novel isolates were closely related to each other (99.6-100% sequence similarity) and shared highest sequence similarities to the described genera Celeribacter (96.2-95.9%), Pseudoruegeria (95.6-94.3%), and Thalassobacter (95.2-93.1%) within the class Alphaproteobacteria. The major isoprenoid quinone was Q-10, polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidic acid, an unknown aminolipid and an unknown lipid as prevalent, and phosphatidylethanolamine was a minor component, and major fatty acids were C(18:1) ω7c , followed by 11-Methyl C(18:1) ω7c, C(12:1) and C(10:0) 3-OH in all strains. The DNA G+C content of strains KMM 9008, KMM 9017, and KMM 9024(T) was in the range of 56.7-60 mol%. Based on distinctive phenotypic characteristics and phylogenetic distance, strain KMM 9024(T) (=NRIC 0787(T) = JCM 17190(T)) represents the type strain of a novel species in a novel genus, for which the name Vadicella arenosi gen. nov., sp. nov. is proposed.  相似文献   

8.
Three strains of Gram-negative bacteria designated strains H2(T), H6, and H7 were isolated from bioreactors that degraded the herbicide hexazinone. Similar morphological characteristics, cellular fatty acid profiles, and 16S rRNA gene sequences show that the isolates are members of the same species. These characteristics also show that the isolates belong to the genus Pseudomonas with P. graminis, P. putida, and P. stutzeri as close relatives. The 16S rRNA gene of the H2(T) strain differed from that of type strains for P. graminis, P. putida, and P. stutzeri by 1.9, 2.5, and 2.7 %, respectively, indicating that the H2(T), H6, and H7 strains are related to P. graminis, P. putida, and P. stutzeri but are different enough to represent a novel species. The G+C content of the three strains averaged 61.2 ± 0.8 mol% which is similar to the values reported for P. graminis (61), P. putida (61.6), and P. stutzeri (62.2-65.5). The major cellular fatty acids present in the H2(T) strain were C(18:1) ω7c/C (18:1) ω6c (34.3 %), C(16:1) ω6c/C(16:1) ω7c (27.4 %), C(16:0) (20.6 %), C(12:0) (7.9 %), C(12:0) 3-OH (4.5 %), and C(10:0) 3-OH (3.1 %). The name Pseudomonas kuykendallii sp. nov. is proposed for these bacteria.  相似文献   

9.
A moderately halophilic bacterial strain 15-13(T), which was isolated from soda meadow saline soil in Daqing City, Heilongjiang Province, China, was subjected to a polyphasic taxonomic study. The cells of strain 15-13 were found to be Gram-negative, rod-shaped, and motile. The required growth conditions for strain 15-13(T) were: 1-23% NaCl (optimum, 7%), 10-50°C (optimum, 35°C), and pH 7.0-11.0 (optimum, pH 9.5). The predominant cellular fatty acids were C(18:1) ω7c (60.48%) and C(16:0) (13.96%). The DNA G+C content was 67.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain 15-13(T) clustered within a branch comprising species of the genus Halomonas. The closest phylogenetic neighbor of strain 15-13(T) was Halomonas pantelleriensis DSM 9661(T) (98.9% 16S rRNA gene sequence similarity). The level of DNA-DNA relatedness between the novel isolated strain and H pantelleriensis DSM 9661(T) was 33.8%. On the basis of the phenotypic and phylogenetic data, strain 15-13(T) represents a novel species of the genus Halomonas, for which the name Halomonas alkalitolerans sp. nov. is proposed. The type strain for this novel species is 15-13(T) (=CGMCC 1.9129(T) =NBRC 106539(T)).  相似文献   

10.
A Gram-negative bacterium that formed cream-colored colonies designated strain LF7 was isolated from soil collected in the Tambopata National Reserve in Madre de Dios, Peru. 16S rRNA sequence comparisons indicate that LF7 is a novel Enterobacter sp. closely related to E. asburiae JCM 6051(T) [AB004744] and E. aerogenes JCM 1235(T) [AB004750] based on their sequence homologies (p-distance: 1.06 and 1.19%, respectively). DNA G + C content was 52.8 mol% which is within the range reported for E. asburiae (55-57 mol%). The major cellular fatty acids present in the LF7 strain were C(16:0) (27.3%), C(16:1) ω7c and/or C(16:1) ω6c (16.3%), C(18:1) ω7c (16.1%), C(17:0) cyclo (12.4%), C(14:0) 3-OH and/or C(16:1) iso-I (8.9%), C(14:0) (7.6%), C(12:0) (3.9%), C(17:0) (2.4%), C(13:0) 3-OH and/or C(15:1) iso-H (1.7%), C(13:0) (1.1%), and C(18:2) ω6,9c and/or C(18:0) ante (0.5%). The cellular fatty acid profile, G + C content, phenotypic and biochemical characteristics were consistent with its placement in the genus Enterobacter. The name Enterobacter soli is proposed for this bacterium.  相似文献   

11.
Gram-negative, rod-shaped bacteria were isolated from Robinia pseudoacacia root nodules. On the basis of the 16S rRNA gene phylogeny, they are closely related to Bradyrhizobium, Rhodopseudomonas and Nitrobacter species (97% sequence similarity), belonging to the class Alphaproteobacteria and family Bradyrhizobiaceae. The results of physiological and biochemical tests together with sequence analysis of housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) allowed differentiation of this group from other validly published Bradyrhizobiaceae genera. NodA, nodC and nifH genes could not be amplified. On the basis of genotypic and phenotypic data, these organisms represent a novel genus and species for which the name Tardiphaga robiniae gen. nov., sp. nov. (LMG 26467(T)=CCUG 61473(T)), is proposed.  相似文献   

12.
Three Gram-positive, anaerobic, pleomorphic strains (PG10(T), PG18 and PG22), were selected among five strains isolated from pig slurries while searching for host specific bifidobacteria to track the source of fecal pollution in water. Analysis of the 16S rRNA gene sequence showed a maximum identity of 94% to various species of the family Bifidobacteriaceae. However, phylogenetic analyses of 16S rRNA and HSP60 gene sequences revealed a closer relationship of these strains to members of the recently described Aeriscardovia, Parascardovia and Scardovia genera, than to other Bifidobacterium species. The names Neoscardovia gen. nov. and Neoscardovia arbecensis sp. nov. are proposed for a new genus and for the first species belonging to this genus, respectively, and for which PG10(T) (CECT 8111(T), DSM 25737(T)) was designated as the type strain. This new species should be placed in the Bifidobacteriaceae family within the class Actinobacteria, with Aeriscardovia aeriphila being the closest relative. The prevailing cellular fatty acids were C(16:0) and C(18:1)ω9c, and the major polar lipids consisted of a variety of glycolipids, diphosphatidyl glycerol, two unidentified phospholipids, and phosphatidyl glycerol. The peptidoglycan structure was A1γmeso-Dpm-direct. The GenBank accession numbers for the 16S rRNA gene and HSP60 gene sequences of strains PG10(T), PG18 and PG22 are JF519691, JF519693, JQ767128 and JQ767130, JQ767131, JQ767133, respectively.  相似文献   

13.
Comparative sequence analysis of 16S rRNA genes was used to determine the phylogenetic relationship of the genus Cristispira to other spirochetes. Since Cristispira organisms cannot presently be grown in vitro, 16S rRNA genes were amplified directly from bacterial DNA isolated from Cristispira cell-laden crystalline styles of the oyster Crassostrea virginica. The amplified products were then cloned into Escherichia coli plasmids. Sequence comparisons of the gene coding for 16S rRNA (rDNA) insert of one clone, designated CP1, indicated that it was spirochetal. The sequence of the 16S rDNA insert of another clone was mycoplasmal. The CP1 sequence possessed most of the individual base signatures that are unique to 16S rRNA (or rDNA) sequences of known spirochetes. CP1 branched deeply among other spirochetal genera within the family Spirochaetaceae, and accordingly, it represents a separate genus within this family. A fluorescently labeled DNA probe designed from the CP1 sequence was used for in situ hybridization experiments to verify that the sequence obtained was derived from the observed Cristispira cells.  相似文献   

14.
Zheng Q  Wang Y  Chen C  Wang Y  Xia X  Fu Y  Zhang R  Jiao N 《Current microbiology》2011,62(3):710-714
A Gram-negative, non-motile, short rod-shaped or spherical bacterial strain that accumulates poly-β-hydroxybutyrate (PHB) granules was isolated from the Beibu Gulf in the South China Sea. Cells have no polar or subpolar flagella, dividing by binary fission. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain formed a monophyletic branch at the periphery of the evolutionary radiation occupied by the genus Paracoccus, family Rhodobacteraceae, order Rhodobacterales, class Alphaproteobacteria. The closest neighbours were Paracoccus aestuarii strain B7(T) (97.2% similarity), Paracoccus zeaxanthinifaciens ATCC 21588(T) (97.1% similarity) and Paracoccus homiensis DD-R11(T) (96.8%). The predominant fatty acids were C(18:1) ω7c (82.1%), and significant amounts of C(18:0) (5.6%), C(10:0) 3-OH (2.3%) and C(16:0) (1.5%) were present. The predominant respiratory ubiquinone of strain JLT1284(T) was Q-10 and the DNA G+C content of strain JLT1284(T) was 67.0 mol%. The isolate was also distinguishable from members of the genus Paracoccus on the basis of phenotypic and biochemical characteristics. It is evident from the genotypic, chemotaxonomic and phenotypic data, therefore, that strain JLT1284(T) represents a novel species of the genus Paracoccus, for which the name Paracoccus beibuensis sp. nov. is proposed. The type strain is JLT1284(T)=LMG 24871(T)=CGMCC 1.7295(T)).  相似文献   

15.
A novel aerobic, Gram-negative bacterial strain, designated KU41E(T), which degrades p-n-nonylphenol, was isolated from seawater obtained from the coastal region of Ishigaki Island, Japan. Cells are motile, curved rods with a single polar flagellum. Strain KU41E(T) grew at 20-35 °C, pH 7.0-8.0, in the presence of 1.0-4.0% NaCl. The predominant respiratory lipoquinone was ubiquinone-8, and the major cellular fatty acids were summed feature 3 (C(15:0) iso 2OH and/or C(16:1) ω7c, 28.4%), C(18:1) ω7c (19.8%), and C(16:0) (17.0%). The DNA G + C content was 48.6 mol%. The 16S rRNA gene sequence analysis indicated that strain KU41E(T) is affiliated with the order Alteromonadales within the class Gammaproteobacteria and is most closely related to Pseudoteredinibacter isoporae SW-11(T) (93.6% similarity) and Teredinibacter turnerae T7902(T) (91.9% similarity). On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU41E(T) is suggested to represent a novel species of a new genus, for which the name Maricurvus nonylphenolicus gen. nov., sp. nov. is proposed. The type strain of M. nonylphenolicus is KU41E(T) (=JCM 17778(T)).  相似文献   

16.
Two Gram-stain-negative, facultative anaerobic, motile, rod-shaped strains, S-B4-1UT and JOB-63a, forming small whitish transparent colonies on marine agar, were isolated from a sponge of the genus Haliclona. The strains shared 99.7% 16S rRNA gene sequence identity and a DNA-DNA hybridization value of 100%, but were differentiated by genomic fingerprinting using rep-PCRs. 16S rRNA gene sequence phylogeny placed the strains as a sister branch to the monophyletic genus Endozoicomonas (Oceanospirillales; Gammaproteobacteria) with 92.3–94.3% 16S rRNA gene sequence similarity to Endozoicomonas spp., 91.9 and 92.1% to Candidatus Endonucleobacter bathymodiolin, and 91.9 to 92.1% to the type strains of Kistimonas spp. Core genome based phylogeny of strain S-B4-1UT confirmed the phylogenetic placement. Major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c) and 8 (C18:1 ω7c/C18:1 ω6c) followed by C10:0 3-OH, C16:0, and C18:0. The G + C content was 50.1–51.4 mol%. The peptidoglycan diamino acid of strain S-B4-1UT was meso-diaminopimelic acid, the predominant polyamine spermidine, the major respiratory quinone ubiquinone Q-9; phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine were major polar lipids. Based on the clear phylogenetic distinction, the genus Parendozoicomonas gen. nov. is proposed, with Parendozoicomonas haliclonae sp. nov. as type species and strain S-B4-1UT (= CCM 8713T = DSM 103671T = LMG 29769T) as type strain and JOB-63a as a second strain of the species. Based on the 16S rRNA gene sequence phylogeny of the Oceanospirillales within the Gammaproteobacteria, the Endozoicomonaceae fam. nov. is proposed including the genera Endozoicomonas, Parendozoicomonas, and Kistimonas as well as the Candidatus genus Endonucleobacter.  相似文献   

17.
One hundred and eighty-seven fructose-6-phosphate phosphoketolase positive strains were isolated from the digestive tract of three different bumblebee species. Analyses of the partial 16S rRNA gene sequences of the representative strains showed only 92.8% and 92.5% similarity to Bifidobacterium coryneforme YIT 4092(T) and Bifidobacterium indicum JCM 1302(T), 92.2% similarity to Alloscardovia omnicolens CCUG 18650 and slightly reduced similarity of 91% to other members of the family Bifidobacteriaceae. On the other hand, analyses of the partial heat-shock protein 60 (hsp60) gene sequence revealed that the proposed type strain BLAPIII-AGV(T) was affiliated only to the 60 kDa chaperonin sequence of uncultured bacteria from human vagina (79-80%) and the hsp60 gene sequence of A. omnicolens CCUG 31649(T) (75.5%). The peptidoglycan type was A4α with an l-Lys-d-Asp interpeptide bridge. The polar lipids contained diphosphatidylglycerol, an unknown phospholipid, six glycolipids and two phosphoglycolipids. The major fatty acids were C(18:1), C(20:0) and C(18:0). These and other analyses indicated that the isolates represented a new genus within the family Bifidobacteriaceae. This observation was further substantiated by determination of the DNA G+C contents (46.1-47.1 mol%). Affinity of the strains to some scardovial genera (Aeriscardovia, Alloscardovia and Metascardovia) was also confirmed by their ability to grow under aerobic conditions. Besides the above mentioned differences, Bombiscardovia coagulans was found to differ from all scardovial genera in the ability to grow at temperatures as low as 5°C, which was another major phenotypically different characteristic of this new member of the family Bifidobacteriaceae. Hence, on the basis of phylogenetic analyses using partial 16S rRNA and hsp60 gene sequence data, and the temperature related phenotypic difference, we propose a novel taxa, B. coagulans gen. nov., sp. nov. (type strain=BLAPIII-AGV(T)=DSM 22924(T)=ATCC BAA-1568(T)).  相似文献   

18.
Strain BH45(T) was isolated from forest soil of Mt. Bukhan in Jeongneung, Seoul, Korea. The Gram-staining-negative strain BH45(T) grows at 4-30°C (optimum of 25-30°C) and between pH 5-8 (optimum of pH 6-8). Its major cellular fatty acids are C(18:3) ω6c (6,9,12) and C(10:0). The G+C content of genomic DNA was 40.2 mol%. The major respiratory quinone system in strain BH45(T) is menaquinone-7. Phylogenetic analysis based on 16S rRNA gene sequences indicates that strain BH45(T) is closely related to the genus Pedobacter. Sequence similarities with P. terrae KCTC 12762(T), P. suwonensis KACC 11317(T), P. soli KACC 14939(T), P. alluvionis DSM 19624(T), P. roseus KCCM 42272(T), P. yonginense KCTC 22721(T) were 97.5, 97.1, 97.0, 97.0, 97.0, and 96.0%, respectively. DNA-DNA hybridization results distinguish strain BH45(T) from two Pedobacter species with high 16S rRNA gene sequence similarities. According to the phenotypic and molecular data, the strain BH45(T) clearly represents a novel species within the genus Pedobacter; thus, the name Pedobacter jeongneungensis sp. nov. is proposed for this strain. The type strain is BH45(T) (=KACC 15514(T) =JCM 17626(T)).  相似文献   

19.
Three facultative anaerobic acidotolerant Gram-negative motile spirilla strains designated 26-4b1, 26-2 and K-1 were isolated from mesotrophic Siberian fen as a component of methanogenic consortia. The isolates were found to grow chemoorganotrophically on several organic acids and glucose under anoxic and low oxygen pressure in the dark, tolerant up to 5kPa of oxygen. At low oxygen supply, faint autotrophic growth on the H(2):CO(2) mixture was also observed. All three isolates were able to fix N(2). Major cellular fatty acids were 18:1 omega7c, 17:0 cyclopropane and 16:0. Phylogenetic analyses of the 16S rRNA gene sequences revealed that they formed a deep branch within the family Rhodospirillaceae of the Alphaproteobacteria with the highest similarity of 90.9-92.5% with members of genera Phaeospirillum and Magnetospirillum. Phylogenetic study of nifH (nitrogenase) and cbbL (RuBisCO) amino acid sequence identities confirmed that the new isolates represent a novel group. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strains 26-4b1, 26-2 and K-1 represent a new species of a novel genus for which the name Telmatospirillum siberiense gen. nov. sp. nov. is proposed.  相似文献   

20.
Two Gram-negative, nonmotile, coccobacilli, SW-3T and SW-100T, were isolated from sea water of the Yellow Sea in Korea. Strains SW-3T and SW-100T contained ubiquinone-9 (Q-9) as the predominant respiratory lipoquinone and C18:1 omega9c and C16:0 as the major fatty acids. The DNA G+C contents of strains SW-3T and SW-100T were 44.1 mol% and 41.9 mol%, respectively. A neighbor-joining tree based on 16S rRNA gene sequences showed that the two isolates fell within the evolutionary radiation enclosed by the genus Acinetobacter. Strains SW-3T and SW-100T exhibited a 16S rRNA gene similarity value of 95.7% and a mean DNA-DNA relatedness level of 9.2%. Strain SW-3T exhibited 16S rRNA gene sequence similarity levels of 93.5-96.9% to the validly described Acinetobacter species and fifteen Acinetobacter genomic species. Strain SW-100T exhibited 16S rRNA gene sequence similarity levels of less than 97.0% to the other Acinetobacter species except Acinetobacter towneri DSM 14962T (98.0% similarity). Strains SW-3T and SW-100T exhibited mean levels of DNA-DNA relatedness of 7.3-16.7% to the type strains of some phylogenetically related Acinetobacter species. On the basis of phenotypic, phylogenetic, and genetic data, strains SW-3T and SW-100T were classified in the genus Acinetobacter as two distinct novel species, for which the names Acinetobacter marinus sp. nov. (type strain SW-3T=KCTC 12259T=DSM 16312T) and Acinetobacter seohaensis sp. nov. (type strain SW-100T=KCTC 12260T=DSM 16313T) are proposed, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号