首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胚胎与子宫内膜上皮细胞之间的黏附是胚胎成功植入的关键. 岩藻糖基转移酶Ⅳ (FUT4)对胚胎细胞与子宫内膜细胞黏附的影响未见报道.本研究以人子宫内膜细胞 (HEC-1A)和胚胎细胞(JAR)为体外着床模型,观察上调HEC-1A细胞中FUT4表达对JAR细 胞与HEC-1A细胞黏附的影响.RT-PCR和免疫细胞化学检测结果显示,FUT4过表达增加 HEC-1A细胞中FUT4基因及蛋白的表达;免疫细胞化学及Western印迹结果表明,上调HEC-1A细胞中FUT4增加细胞表面LeY的合成;细胞黏附实验结果显示,与未转染组相比较,FUT4过表达增加了JAR细胞与HEC-1A细胞的黏附率.本研究证明,FUT4过表达可以增加细胞表面LeY寡糖抗原的合成,从而促进胚胎细胞与子宫内膜细胞的黏附.  相似文献   

2.
Summary Adhesive interactions of trophoblast cells with the endometrium are essential for embryo implantation in the uterus. Choriocarcinoma cells, the malignant counterpart of trophoblast, show pronounced invasiveness and are of interest for model studies. We describe here an in vitro model system for the study of adhesion of human JAR choriocarcinoma multicellular spheroids to different human endometrial epithelial cell lines (RL95-2, HEC-1A, KLE, AN3-CA) grown as monolayers. Cell characterization showed JAR spheroids to secrete the placental hormones human chorionic gonadotropin and progesterone into the culture medium; distinct patterns of keratin, vimentin, and uvomorulin expression were seen in the endometrial cell lines. Spheroid attachment to endometrial monolayers was quantified using a centrifugal force-based adhesion assay, and morphology was examined by light and electron microscopy. Results showed the JAR spheroids to attach to three of the endometrial monolayers (RL95-2, HEC-1A, KLE) progressively over a 24-h period (by which time ≥80% of the spheroids attached). Significant differences in spheroid attachment were most pronounced at 5 h (RL95-2 > HEC-1A > KLE and poly-d-lysine control, i.e. 90:45:17:17% attached). JAR spheroids did not attach to the endometrial cell line AN3-CA. Morphology revealed choriocarcinoma cells to begin to intrude between the uterine RL95-2 epithelial cells at 5 h. At 24 h, this intrusive type of penetration continued to be seen only with the RL95-2 monolayer. The assay system thus identifies differences in attachment properties between choriocarcinoma cells and various endometrial cell lines and forms the basis for further studies on the molecular interactions involved.  相似文献   

3.
Human endometrial epithelial cells (EECs) are nonadhesive for embryos throughout most of the menstrual cycle. During the so-called implantation window, the apical plasma membrane of EECs acquire adhesive properties by undergoing a series of morphological and biochemical changes. The human endometrial-derived epithelial cell line, RL95-2, serves as an in vitro model for receptive uterine epithelium because of its high adhesiveness for trophoblast-derived cells. In contrast, the HEC-1-A cell line, which displays poor adhesive properties for trophoblast cells, is considered to be less receptive. The ezrin, radixin, and moesin protein family members, which are present underneath the apical plasma membrane, potentially act to link the cytoskeleton and membrane proteins. In the present study, we have further investigated the adhesive features in these two unrelated endometrial-derived cell lines using an established in vitro model for embryonic adhesion. We have also analyzed the protein pattern and mRNA expression of ezrin and moesin in RL95-2 cells versus HEC-1-A cells. The results demonstrate that RL95-2 cells were indeed more receptive (81% blastocyst adhesion) compared with HEC-1-A cells (46% blastocyst adhesion). An intermediate adhesion rate was found in primary EECs cultured on extracellular matrix gel, thus allowing a partial polarization of these cells (67% blastocyst adhesion). Furthermore, we found that moesin was absent from RL95-2 cells. In contrast, ezrin is expressed in both cell lines, yet it is reduced in adherent RL95-2 cells. Data are in agreement with the hypothesis that uterine receptivity requires down-regulation or absence of moesin, which is a less-polarized actin cytoskeleton.  相似文献   

4.
Liu S  Zhang Y  Liu Y  Qin H  Wang X  Yan Q 《IUBMB life》2008,60(7):461-466
Implantation is a complex developmental event that is initiated by recognition and adhesion of the embryo to the endometrial epithelium. sLeX is an oligosaccharide antigen acting as the ligand of L-selectin, and is stage-specifically expressed in the endometrial epithelium. The adhesion system mediated by L-selectin and sLeX oligosaccharide plays an important role in this process. FUT7 is a key enzyme for sLeX synthesis, and the regulation of sLeX through FUT7 may influence maternal-fetal recognition. In this study, we observed the effect of FUT7 antisense oligodeoxynucleotide on the expression of FUT7 and sLeX, as well as adhesion in an in vitro implantation model consisting of the human uterine epithelial cell line RL95-2 and the human embryonic cell line JAR. Results showed that the expression of FUT7 was significantly decreased, compared with controls, after FUT7 antisense oligodeoxynucleotide transfection into RL95-2 cells, as determined by RT-PCR, Western blotting, and indirect immunofluorescence. Synthesis of sLeX was also decreased, consistent with the FUT7 decrease, as shown by indirect immunofluorescence. The adhesion of embryonic cells to uterine epithelial cells was significantly reduced (P < 0.01) compared with the control. These data indicate that the use of a FUT7 antisense oligodeoxynucleotide can cause a significant reduction of both FUT7 and sLeX antigen, and thereby inhibit the adhesion of embryo cells to endometrium. This approach may provide a new way to regulate reproduction.  相似文献   

5.
The complex implantation process is initiated by the recognition and adhesion between the embryo and uterine endometrial epithelium. The expression and interactions between the adhesive molecules from both fetal and maternal sides are crucial for the successful implantation. In this study, we aimed to investigate the expression and adhesive function of sLeX on the trophoblasts and L-selectin on uterine epithelial cells mediated the adhesion at the fetal-maternal interface, and to further explore whether this adhesion system could induce endometrial apoptosis, using in vitro implantation model consisting of the human trophoblast cell line (JAR) and human uterine epithelial cell line (RL95-2). The results showed that sLeX was expressed on JAR cells by indirect immunofluorescence staining. After transfection of JAR cells with fucosyltransferase VII (FUT7) which is the key enzyme for sLeX synthesis, the expression of FUT7 and sLeX synthesis were increased, and the percent adhesion of trophoblast cells to RL95-2 cell monolayer was significantly increased (P?相似文献   

6.
Cytokine-like protein 1 (Cytl1), originally described as a protein expressed in CD34+ cells, was recently identified as a functional secreted protein involved in chondrogenesis and cartilage development. However, our knowledge of Cytl1 is still limited. Here, we determined the Cytl1 expression pattern regulated by ovarian hormones at both the mRNA and protein levels. We found that the endometrial expression of Cytl1 in mice was low before or on the first day of gestation, significantly increased during embryo implantation, and then decreased at the end of implantation. We investigated the effects of Cytl1 on endometrial cell proliferation, and the effects on the secretion of leukemia inhibitory factor (LIF) and heparin-binding epidermal growth factor (HB-EGF). We also explored the effect of Cytl1 on endometrial adhesion properties in cell-cell adhesion assays. Our findings demonstrated that Cytl1 is an ovarian hormone-dependent protein expressed in the endometrium that enhances the proliferation of HEC-1-A and RL95-2 cells, stimulates endometrial secretion of LIF and HB-EGF, and enhances the adhesion of HEC-1-A and RL95-2 cells to JAR spheroids. This study suggests that Cytl1 plays an active role in the regulation of embryo implantation.  相似文献   

7.
8.
9.
Zhang Z  Sun P  Liu J  Fu L  Yan J  Liu Y  Yu L  Wang X  Yan Q 《Biochimica et biophysica acta》2008,1783(2):287-296
Lewis Y (LeY) antigen is highly expressed in a variety of human carcinomas of epithelial cell origin. Recent studies suggest functional blockade of LeY may provide a novel therapeutic approach for the treatment of cancers. However, suppressing LeY expression by genetic manipulation and its impact on neoplastic cell proliferation has not been investigated. We report here that different fucosyltransferases (FUTs) were expressed with the greatest expression of fucosyltransferase I or IV (FUT1/4), the two key enzymes for the synthesis of LeY in human epidermoid carcinoma A431 cells. Knocking down FUT1/4 expression by short interfering RNA technique dramatically reduced the expression of FUT1/4 and LeY and inhibited cell proliferation through decreasing epidermal growth factor receptor (EGFR) signaling pathway. Treatment of A431 cells that were inoculated into the nude mice with FUT1 siRNA or FUT4 siRNA greatly impeded tumor growth. Suppressing FUT1/4 expression also blocked EGF-induced tyrosine phosphorylation of EGFR and mitogen-activated protein kinases. In conclusion, suppressing the expression of FUT1/4 by RNAi technology reduces the synthesis of LeY and inhibits cancer growth. It may serve as a potential methodology for the treatment of cancers that express LeY glycoconjugates.  相似文献   

10.
Yang JZ  O'Flatharta C  Harvey BJ  Thomas W 《Steroids》2008,73(11):1110-1122
The purpose of this study was to investigate the role of the oestrogen receptor subtypes ERalpha and ERbeta in mediating the non-genomic effects of 17-beta-estradiol (E(2)) in two human endometrial cancer cell lines (RL95-2 and HEC-1A) expressing different levels of these receptor subtypes. Western blotting analysis using phosphorylation site-specific antibodies showed that physiological concentrations of E(2) rapidly (<20 min) activated PKCalpha, but not PKCdelta in the RL95-2 cell line. E(2) had no effect on PKCalpha or PKCdelta activity in the HEC-1A cell line and suppressed basal levels of PKA activity in both cell lines. PKCalpha activation coincided with its membrane translocation. ERalpha was detected in the RL95-2 cell line by Western blotting and RT-PCR but not in the HEC-1A cells, which did express ERbeta. A selective ERalpha agonist PPT had the same effect as E(2) on PKCalpha activation in the RL95-2 cells, but the selective ERbeta agonist DPN had no such effect. A 46kDa variant of ERalpha increased in abundance in the cell membrane within 20 min of E(2) treatment suggesting that ERalpha mediated the E(2) non-genomic effects on PKCalpha through the formation of a membrane associated signalling complex.  相似文献   

11.
12.
13.
Epidemiological studies have demonstrated that type 2 diabetes mellitus (T2DM) and hyperinsulinemia are associated closely with endometrial carcinoma risk, although the molecular mechanism remains unclear. Insulin receptor isoformA expression is upregulated in many cancer cells and tissues, which suggests that IR-A-mediated signaling pathways may have important implications for cancer pathogenesis. We measured the expression of insulin receptor isoforms (IR-A and IR–B in the normal endometrium tissues, the endometrial carcinoma tissues and the endometrial carcinoma cell lines. We found that the total insulin receptor (IR) and IR-A expression mRNA levels and the ratio of IR-A to total IR in endometrial carcinoma specimens were significantly higher than them in control endometrial tissue specimens(P<0.05). Further analysis indicated that the tendency was more prominently in patients with T2DM. IR-A mRNA was differentially expressed in four endometrial carcinoma cell lines (Ishikawa, KLE, RL95-2 and HEC-1-A. RL95-2 cells have a low endogenous IR-A expression, and these were used to construct a stable cell line overexpressing IR-A. We found that IR-A overexpression significantly increased cell proliferation, the proportion of cells in S phase, activation of the Akt pathway and tumorigenicity of xenografts in nude mice. In contrast, there was no significant difference in the the percentage of apoptotic cells between cells overexpressing IR-A and control cells. Moreover, levels of phosphorylated ERK1/2 protein were significantly decreased in cells overexpressing IR-A relative to controls. These findings reveal the pivotal role of IR-A in endometrial cancer carcinogenesis, and suggest that the association of elevated IR-A levels with cell proliferation and tumorigenicity may be causally linked to its effect on the proportion of cells in S phase and the activation of the Akt pathway.  相似文献   

14.
15.
16.
LeY是一种双岩藻糖化寡糖,在大多数上皮来源的肿瘤细胞(包括乳腺癌、卵巢癌等)中高表达.岩藻糖基转移酶Ⅳ(fucosyltransferase Ⅳ, FUT4)是合成LeY的关键酶. 前期工作发现,FUT4通过增加LeY糖的合成来促进细胞的增殖. 但有关FUT4的转录调控机制尚不清楚. 本文通过对人FUT4基因近端启动子进行生物信息学分析,并构建不同长度启动子序列荧光虫荧光素酶报告基因表达载体,分析其转录活性. 使用First EF程序分析并获得FUT4近端启动子序列,采用PCR 法扩增FUT4基因近端不同长度的启动子序列,定向克隆,获得不同长度的启动子重组质粒. 重组质粒经双酶切及测序鉴定正确. 荧光素酶活性分析不同长度的FUT4 基因启动子片段的转录活性.结果显示,pGL6-FUT4-1.2 kb在MCF-7和MDA- MB-231细胞中转录活性明显升高(P<0.05).说明FUT4基因启动子区域定位于转 录起始位点上游的-800~-1 600 bp的区域内.  相似文献   

17.
Despite the fact that long noncoding RNAs (lncRNAs) play roles in almost all biological processes, little is known about their biological function in the endometrium during the formation of endometrial receptivity. In this study, a comprehensive analysis of lncRNAs in goat endometrial tissues on Day 5 (prereceptive endometrium, PE) and Day 15 (receptive endometrium, RE) of pregnancy was performed by using RNA-Seq. As a result, 668 differentially expressed lncRNAs (DELs) were found between the PE and RE. Further study showed that lncRNA882, regulated by estrogen (E2) and progestin (P4), could act as competing endogenous RNAs (ceRNAs) for miR-15b, which inhibited the expression of transforming growth factor-b-activated kinase 1 binding protein 3 (TAB3) and then indirectly regulated the level of leukemia inhibitory factor (LIF). This was helpful for the formation of endometrial receptivity in dairy goats. In conclusion, we elucidated the endometrium lncRNA profiles of PE and RE in dairy goats; lncRNA882 acted as a ceRNA for miR-15b and then indirectly regulated the level of LIF in goat endometrial epithelium cells. Thus, this study helped us to better understand the molecular regulation of endometrial receptivity in dairy goats.  相似文献   

18.
19.
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During “window of implantation”, uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.  相似文献   

20.
目的:探讨子宫内膜癌细胞在受到过氧化氢刺激时热休克因子1(Heat Shock Factor 1,HSF1)表达的变化,以及HSF1对肿瘤细胞抗凋亡能力的影响。方法:选择子宫内膜癌的Ishikawa、HEC-1-B及RL95-2三株细胞。分别测定细胞中HSF1基因转录以及翻译表达水平。给予细胞不同浓度的H2O2刺激后,检测细胞内HSF1的mRNA表达变化并且统计受刺激后细胞受抑制情况,观察细胞存活和生长与HSF1含量的关系。结果:三株细胞中HSF1mRNA和蛋白表达的基水平不同;在受到H2O2刺激后,细胞内HSF1表达有不同程度的升高;Ishikawa、HEC-1-B细胞分别在受到较高浓度的H2O2刺激后,细胞存活率出现明显下降;而RL95-2细胞在受到相对低浓度的H2O2刺激后,细胞存活率即出现明显降低。结论:一定范围内浓度的H2O2刺激能够上调子宫内膜癌细胞中HSF1在转录以及蛋白水平的表达,而过高的浓度会使细胞中HSF1表达减少,对于不同细胞来说H2O2刺激的适宜浓度不同。而能使细胞增殖与增长发生明显变化的H2O2浓度与细胞内HSF1表达水平相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号