首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

2.
We have addressed the question of whether the Na/K+-ATPase in the human erythrocyte is in a state of near-equilibrium by varying the extracellular ratio of Na+ and K+ and following the cytosolic phosphorylation potential by 31P-NMR and by combined enzymatic colorimetric measurements. There was no correlation at room temperature between the extracellular Na+/K+ ratio and the cytosolic phosphorylation potential measured either by NMR or alternative methods. The cytosolic phosphorylation potential measured by NMR was 4100 +/- 1300 (S.E.) M-1 at an extracellular K+ concentration of 5.9 mM (Na+/K+ ratio of 24.3) and 2800 +/- 700 (S.E.) M-1 at 75 mM extracellular K+ (Na+/K+ ratio of 0.99). The chemically determined phosphorylation potential was 6400 +/- 1200 (S.E.) and 5000 +/- 700 (S.E.) M-1 at 5.9 and 75 mM extracellular K+, respectively. Omission of Ca2+ from the buffer solutions did not affect the results. A consistent finding in this study was that the NMR-determined value of ATP was about 10-20% lower than the value determined enzymatically on perchloric acid extracts. The inorganic phosphate (Pi) was fully NMR visible.  相似文献   

3.
The balance and cross-talk between natruretic and antinatruretic hormone receptors plays a critical role in the regulation of renal Na+ homeostasis, which is a major determinant of blood pressure. Dopamine and angiotensin II have antagonistic effects on renal Na+ and water excretion, which involves regulation of the Na+,K+-ATPase activity. Herein we demonstrate that angiotensin II (Ang II) stimulation of AT1 receptors in proximal tubule cells induces the recruitment of Na+,K+-ATPase molecules to the plasmalemma, in a process mediated by protein kinase Cbeta and interaction of the Na+,K+-ATPase with adaptor protein 1. Ang II stimulation led to phosphorylation of the alpha subunit Ser-11 and Ser-18 residues, and substitution of these amino acids with alanine residues completely abolished the Ang II-induced stimulation of Na+,K+-ATPase-mediated Rb+ transport. Thus, for Ang II-dependent stimulation of Na+,K+-ATPase activity, phosphorylation of these serine residues is essential and may constitute a triggering signal for recruitment of Na+,K+-ATPase molecules to the plasma membrane. When cells were treated simultaneously with saturating concentrations of dopamine and Ang II, either activation or inhibition of the Na+,K+-ATPase activity was produced dependent on the intracellular Na+ concentration, which was varied in a very narrow physiological range (9-19 mm). A small increase in intracellular Na+ concentrations induces the recruitment of D1 receptors to the plasma membrane and a reduction in plasma membrane AT1 receptors. Thus, one or more proteins may act as an intracellular Na+ concentration sensor and play a major regulatory role on the effect of hormones that regulate proximal tubule Na+ reabsorption.  相似文献   

4.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na+ +K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na+ +K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2 X 10(-6)M. Neuro-2A cells contain (3.5 +/- 0.7) X 10(5) ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7 +/- 0.4) X 10(-20) mol K+/min per copy of (Na+ +K+)-ATPase at room temperature.  相似文献   

5.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

6.
In previous papers we showed that Ang II increases the proximal tubule Na+-ATPase activity through AT1/PKC pathway [L.B. Rangel, C. Caruso-Neves, L.S. Lara, A.G. Lopes, Angiotensin II stimulates renal proximal tubule Na+-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316, L.B.A. Rangel, A.G. Lopes, L.S. Lara, C. Caruso-Neves, Angiotensin II stimulates renal proximal tubule Na+)-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316]. In the present paper, we study the involvement of PI-PLCbeta on the stimulatory effect of angiotensin II (Ang II) on the proximal tubule Na+-ATPase activity. Western blotting assays, using a polyclonal antibody for PI-PLCbeta, show a single band of about 150 KDa, which correspond to PI-PLCbeta isoforms. Ang II induces a rapid decrease in PIP2 levels, a PI-PLCbeta substrate, being the maximal effect observed after 30 s incubation. This effect of Ang II is completely abolished by 5 x 10(-8) M U73122, a specific inhibitor of PI-PLCbeta. In this way, the effect of 10(-8) M Ang II on the proximal tubule basolateral membrane (BLM) Na+-ATPase activity is completely abolished by 5 x 10(-8) M U73122. The increase in diacylglycerol (DAG) concentration, an product of PI-PLCbeta, from 0.1 to 10 nM raises the Na+-ATPase activity from 6.1+/-0.2 to 13.1+/-1.8 nmol Pi mg(-1) min(-1). This effect is similar and non-additive to that observed with Ang II. Furthermore, the stimulatory effect of 10 nM DAG is completely reversed by 10(-8) M calphostin C (Calph C), an inhibitor of PKC. Taken together these data indicate that Ang II stimulates the Na+-ATPase activity of proximal tubule BLM through a PI-PLCbeta/PKC pathway.  相似文献   

7.
8.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

9.
The effects of K+ on the phosphorylation of H+/K(+)-ATPase with inorganic phosphate were studied using H+/K(+)-ATPase purified from porcine gastric mucosa. The phosphoenzyme formed by phosphorylation with Pi was identical with the phosphoenzyme formed with ATP. The maximal phosphorylation level obtained with Pi was equal to that obtained with ATP. The Pi phosphorylation reaction of H+/K(+)-ATPase was, like that of Na+/K(+)-ATPase, a relatively slow reaction. The rates of phosphorylation and dephosphorylation were both increased by low concentrations of K+, which resulted in hardly any effect on the phosphorylation level. A decrease of the steady-state phosphorylation level was caused by higher concentrations of K+ in a noncompetitive manner, whereas no further increase in the dephosphorylation rate was observed. The decreasing effect was caused by a slow binding of K+ to the enzyme. All above-mentioned K+ effects were abolished by the specific H+/K(+)-ATPase inhibitor SCH 28080 (2-methyl-8-[phenyl-methoxy]imidazo-[1-2-a]pyrine-3-acetonitrile). Additionally, SCH 28080 caused a 2-fold increase in the affinity of H+/K(+)-ATPase for Pi. A model for the reaction cycle of H+/K(+)-ATPase fitting the data is postulated.  相似文献   

10.
The in vitro influence of potassium ion modulations, in the concentration range 2 mM-500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+ / K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+ / K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 x 10(-6) M / 8.56 x 10(-5) M and 7.06 x 10(-7) M / 1.87 x 10(-5) M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50-500 mM) in the medium assay prior to Na+ / K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+ / K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+ / K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction.  相似文献   

11.
Oligomycin reduced the fluorescence intensity of an N-(p-(2-benzimidazoly)phenyl) maleimide (BIPM) probe at Cys-964 of the alpha-chain of pig kidney Na+,K(+)-ATPase with increase in the concentration of Na+ with a Hill coefficient of nh = 0.77 with Kh = 231 mM. The maximum fluorescence decrease was around 80% of the value observed after accumulation of ADP-sensitive phosphoenzyme (E1P) in the presence of 2 M Na+. The addition of Mg2+ and ATP with Na+ or choline chloride to give the same final ligand concentration to the Na(+)-enzyme-oligomycin complex formed with 16 mM Na+ + 1,984 mM choline chloride or 2 M Na+ induced rapid phosphorylation (20 or 21/s) and slower fluorescence decrease (12.1 +/- 1.2 or 10.1 +/- 3.2/s). These additions to the Na(+)-enzyme complex formed under the former or the latter conditions induced slow phosphorylation (13/s) prior to a much slower fluorescence decrease (3.4 +/- 0.3 or 8.6 +/- 0.7/s). The addition of Ca2+ and ATP to these enzyme complexes induced rapid fluorescence changes (21-11/s) followed by one order of magnitude slower rates of phosphorylation (1.5-1.3 s). These data suggest that the decrease in BIPM fluorescence induced by ATP with Ca2+ or with Mg2+, reflects the change of the Na+ binding state before or after the formation of E1P, respectively.  相似文献   

12.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

13.
We demonstrated previously that in serum-starved MCF-7 breast cancer cell line, Ang II increased Na+/K+ATPase activity and activated the protein kinase C zeta (PKC-zeta) (Muscella et al., 2002 J Endocrinol 173:315-323; 2003 J Cell Physiol 197:61-68.). The aim of the present study was to investigate the modulation of the activity of the Na+/K+ATPase by PKC-zeta in MCF-7 cells. Here, using serum-starved MCF-7 cells, we have demonstrated that the effect of Ang II on the Na+/K+ATPase activity was inhibited by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS) and by high doses of GF109203X, inhibitor of PKCs. When MCF-7 cells, grown in 10% fetal bovine serum (FBS), were stimulated with Ang II a dose- and time-dependent inhibition of the Na+/K+ATPase activity was obtained. Under this growth condition we found that mRNAs for AT1, AT2, and for Na+/K+ATPase alpha1 and alpha3 subunits were unchanged; besides both the activity of the Na+/K+ATPase and the level of PKC-zeta also were unaffected by the serum. The atypical PKC-iota level (present in very low abundance in serum-starved MCF-7) was increased and Ang II provoked its translocation from the cytosol to plasma membrane. PKC-zeta was localized to the membrane, and upon Ang II treatment its cellular localization did not change. The Ang II-mediated decrease of the Na+/K+ATPase activity was inhibited by high doses of GF109203X but not by zeta-PS, thus indicating that such effect was not due to PKC-zeta activity. The treatment of cells with PKC-iota antisense oligodeoxynucleotides inhibited the effects of Ang II on the Na+/K+ATPase activity. Additionally, the effect of Ang II on Na+/K+ATPase activity was also blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin and LY294002, and by the actin depolymerizing agents, cytochalasin D. In conclusion, in MCF-7 cells Ang II modulates the Na+/K+ATPase activity by both atypical PKC-zeta/-iota. The effects of Ang II are opposite depending upon the presence of the serum-sensitive PKC-iota, with the inhibitory effect possibly due to the redistribution of sodium pump from plasma membrane to the inactive intracellular pool.  相似文献   

14.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

15.
Na+/K+-ATPase functions as both an ion pump and a signal transducer. Cardiac glycosides partially inhibit Na+/K+-ATPase, causing activation of multiple interrelated growth pathways via the Na+/K+-ATPase/c-Src/epidermal growth factor receptor complex. Such pathways include Ras/MEK/ERK and Ral/RalGDS cascades, which can lead to cardiac hypertrophy. In search of novel Ral-GTPase binding proteins, we used RalB as the bait to screen a human testes cDNA expression library using the yeast 2-hybrid system. The results demonstrated that 1 of the RalB interacting clones represented the C-terminal region of the beta1 subunit of Na+/K+-ATPase. Further analysis using the yeast 2-hybrid system and full-length beta1 subunit of Na+/K+-ATPase confirmed the interaction with RalA and RalB. In vitro binding and pull-down assays demonstrated that the beta1 subunit of Na+/K+-ATPase interacts directly with RalA and RalB. Ral-GTP pull-down assays demonstrated that short-term ouabain treatment of A7r5 cells, a rat aorta smooth muscle cell line, caused activation of Ral GTPase. Maximal activation was observed 10 min after ouabain treatment. Ouabain-mediated Ral activation was inhibited upon the stimulation of Na+/K+-ATPase activity by Ang II. We propose that Ral GTPase is involved in the signal transducing function of Na+/K+-ATPase and provides a possible molecular mechanism connecting Ral to cardiac hypertrophy during diseased conditions.  相似文献   

16.
The dephosphorylation kinetics of acid-stable phosphointermediates of (Na+ + K+)-ATPase from ox brain, ox kidney and pig kidney was studied at 0 degree C. Experiments performed on brain enzyme phosphorylated at 0 degree C in the presence of 20-600 mM Na+, 1 mM Mg2+ and 25 microM [gamma-32P]ATP show that irrespectively of the EP-pool composition, which is determined by Na+ concentration, all phosphoenzyme is either ADP- or K+-sensitive. After phosphorylation of kidney enzymes at 0 degree C with 1 mM Mg2+, 25 microM [gamma-32P]ATP and 150-1000 mM Na+ the amounts of ADP- and K+-sensitive phosphoenzymes were determined by addition of 1 mM ATP + 2.5 mM ADP or 1 mM ATP + 20 mM K+. Similarly to the previously reported results on brain enzyme, both types of dephosphorylation curves have a fast and a slow phase, so that also for kidney enzymes a slow decay of a part of the phosphoenzyme, up to 80% at 1000 mM Na+, after addition of 1 mM ATP + 20 mM K+ is observed. The results obtained with the kidney enzymes seem therefore to reinforce previous doubts about the role played by E1 approximately P(Na3) as intermediate of (Na+ + K+)-ATPase activity. Furthermore, for both kidney enzymes the sum of ADP- and K+-sensitive phosphoenzymes is greater than E tot. In experiments on brain enzyme an estimate of dissociation rate constant for the enzyme-ATP complex, k-1, is obtained. k-1 varies between 1 and 4 s-1 and seems to depend on the ligands present during formation of the complex. The highest values are found for enzyme-ATP complex formed in the presence of Na+ or Tris+. The results confirm the validity of the three-pool model in describing dephosphorylation kinetics of phosphointermediates of Na+-ATPase activity.  相似文献   

17.
Purified Na+, K(+)-ATPase was phosphorylated by [gamma-32P]ATP in a medium containing dimethylsulfoxide and 5 mM Mg2+ in the absence of Na+ and K+. Addition of K+ increased the phosphorylation levels from 0.4 nmol phosphoenzyme/mg of protein in the absence of K+ to 1.0 nmol phosphoenzyme/mg of protein in the presence of 0.5 mM K+. Higher velocities of enzyme phosphorylation were observed in the presence of 0.5 mM K+. Increasing K+ concentrations up to 100 mM lead to a progressive decrease in the phosphoenzyme (EP) levels. Control experiments, that were performed to determine the contribution to EP formation from the Pi inevitably present in the assays, showed that this contribution was of minor importance except at high (20-100 mM) KCl concentrations. The pattern of EP formation and its KCl dependence is thus characteristic for the phosphorylation of the enzyme by ATP. In the absence of Na+ and with 0.5 mM K+, optimal levels (1.0 nmol EP/mg of protein) were observed at 20-40% dimethylsulfoxide and pH 6.0 to 7.5. Addition of Na+ up to 5 mM has no effect on the phosphoenzyme level under these conditions. At 100 mM Na+ or higher the full capacity of enzyme phosphorylation (2.2 nmol EP/mg of protein) was reached. Phosphoenzyme formed from ATP in the absence of Na+ is an acylphosphate-type compound as shown by its hydroxylamine sensitivity. The phosphate radioactivity was incorporated into the alpha-subunit of the Na+, K(+)-ATPase as demonstrated by acid polyacrylamide gel electrophoresis followed by autoradiography.  相似文献   

18.
ATP and GTP have been compared as substrates for (Na+ + K+)-ATPase in Na+-activated hydrolysis, Na+-activated phosphorylation, and the E2K----E1K transition. Without added K+ the optimal Na+-activated hydrolysis rates in imidazole-HCl (pH 7.2) are equal, but are reached at different Na+ concentrations: 80 mM Na+ for GTP, 300 mM Na+ for ATP. The affinities of the substrates for the enzyme are widely different: Km for ATP 0.6 microM, for GTP 147 microM. The Mg-complexed nucleotides antagonize activation as well as inhibition by Na+, depending on the affinity and concentration of the substrate. The optimal 3-s phosphorylation levels in imidazole-HCl (pH 7.0) are equally high for the two substrates (3.6 nmol/mg protein). The Km value for ATP is 0.1-0.2 microM and for GTP it ranges from 50 to 170 microM, depending on the Na+ concentration. The affinity of Na+ for the enzyme in phosphorylation is lower with the lower affinity substrate: Km (Na+) is 1.1 mM with ATP and 3.6 mM with GTP. The GTP-phosphorylated intermediate exists, like the ATP-phosphorylated intermediate, in the E2P conformation. Addition of K+ increases the optimal hydrolytic activity 30-fold for ATP (at 100 mM Na+ + 10 mM K+) and 2-fold for GTP (at 100 mM Na+ + 0.16 mM K+). K+ greatly increases the Km values for both substrates (to 430 microM for ATP and 320 microM for GTP). Above 0.16 mM K+ inhibits GTP hydrolysis. GTP does not reverse the quenching effect of K+ on the fluorescence of the 5-iodoacetamidofluorescein-labeled enzyme. ATP fully reverses this effect, which represents the transition from E1K to E2K. Hence GTP is unable to drive the E2K----E1K transition.  相似文献   

19.
Since Na+,K+-ATPase (EC 3.6.1.3) of pig kidney modified with a fluorescent sulfhydryl reagent, N-[p-(2-benzimidazolyl) phenyl]maleimide, at Cys-964 of the alpha-chain showed ATP-dependent, reversible, and dynamic fluorescence changes (Nagai, M., Taniguchi, K., Kangawa, K., Matsuo, S., Nakamura, S., and Iida, S. (1986) J. Biol. Chem. 261, 13197-13202), we studied the conformational change during Na+,K+-ATPase reaction using the modified enzyme. The addition of K+ to the enzyme increased the fluorescence intensity to 2% in the presence of 160 mM Na+ and 3 mM Mg2+ (K0.5 = 16.4 mM). Addition of low concentrations of ATP immediately increased the intensity to 3.2% (K0.5 less than 0.1 microM) to accumulate fully K+-bound enzyme in the presence of 43 mM K+ with Na+ and Mg2+, but further addition of higher concentrations of ATP diminished the increase (K0.5 = 120 microM). After exhaustion of ATP, the fluorescence intensity decreased to -0.4% (K0.5 = 0.3 microM) and -2% (K0.5 = 20 microM), respectively, in the presence of low and high concentrations of ADP produced from ATP. High concentrations of ATP accelerated Na+,K+-ATPase activity with a simultaneous increase in the amount of ADP-sensitive phosphoenzyme irrespective of the modification. Adenylyl imidodiphosphate and ADP accelerated Na+,K+-ATPase activity in the presence of 2.7 microM ATP by decreasing the extent of the fluorescence without affecting the amount of phosphoenzyme, irrespective of the modification. These data suggest that Na+,K+-ATPase activity was accelerated due to the acceleration of the breakdown of K+-bound enzyme by high concentrations of ATP and ATP analogues.  相似文献   

20.
Parathyroid hormone (PTH) inhibits Na(+),K(+)-ATPase activity through protein kinase C- (PKC) and extracellular signal-regulated kinase- (ERK) dependent pathways and increases serine phosphorylation of the alpha(1)-subunit. To determine whether specific serine phosphorylation sites within the Na(+),K(+)-ATPase alpha(1)-subunit are involved in the Na(+),K(+)-ATPase responses to PTH, we examined the effect of PTH in opossum kidney cells stably transfected with wild type rat Na(+),K(+)-ATPase alpha(1)-subunit (WT), serine 11 to alanine mutant alpha(1)-subunit (S11A), or serine 18 to alanine mutant alpha(1)-subunit (S18A). PTH increased phosphorylation and endocytosis of the Na(+),K(+)-ATPase alpha(1)-subunit into clathrin-coated vesicles in cells transfected with WT and S18A rat Na(+),K(+)-ATPase alpha(1)-subunits. PTH did not increase the level of phosphorylation or stimulate translocation of Na(+),K(+)-ATPase alpha(1)-subunits into clathrin-coated vesicles in cells transfected with the S11A mutant. PTH inhibited ouabain-sensitive (86)Rb uptake and Na(+),K(+)-ATPase activity (ouabain-sensitive ATP hydrolysis) in WT- and S18A-transfected opossum kidney cells but not in S11A-transfected cells. Pretreatment of the cells with the PKC inhibitors and ERK inhibitor blocked PTH inhibition of (86)Rb uptake, Na(+),K(+)-ATPase activity, alpha(1)-subunit phosphorylation, and endocytosis in WT and S18A cells. Consistent with the notion that ERK phosphorylates Na(+),K(+)-ATPase alpha(1)-subunit, ERK was shown to be capable of causing phosphorylation of Na(+),K(+)-ATPase alpha(1)-subunit immunoprecipitated from WT and S18A but not from S11A-transfected cells. These results suggest that PTH regulates Na(+),K(+)-ATPase by PKC and ERK-dependent alpha(1)-subunit phosphorylation and that the phosphorylation requires the expression of a serine at the 11 position of the Na(+),K(+)-ATPase alpha(1)-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号