首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan  Mingke  Zheng  Lu  Li  Bingjuan  Shen  Renfang  Lan  Ping 《Plant molecular biology》2021,105(3):287-302
Plant Molecular Biology - Beyond the role of a nutrient reservoir during germination, the endosperm of wheat seeds also responds to different abiotic stresses via modification of the protein...  相似文献   

2.
3.
In plant/parasitic plant interaction, little is known about the host plant response before the establishment of the parasite within the host. In the present work, we focused on host responses to parasitic plant, O. ramosa in the early stage of infection. We used a co-culture system of A. thaliana suspension cells and O. ramosa germinated-seeds to avoid parasite attachment. We showed that O. ramosa induced H2O2 generation and camalexin synthesis by A. thaliana followed by a drastic increase in cell death. We further demonstrated that a heat sensitive diffusible signal is responsible for this cell death. These data indicate that recognition of O. ramosa occurs before the attachment of the parasite and initiates plant defence responses.Key words: Orobanche ramosa, Arabidopsis thaliana, cell death, hydrogen peroxide, secondary metabolism  相似文献   

4.
Sheoran IS  Olson DJ  Ross AR  Sawhney VK 《Proteomics》2005,5(14):3752-3764
Proteome analysis of embryo and endosperm tissues from germinating tomato seed was conducted using 1-DE, 2-DE, and MS. Mobilization of the most abundant proteins, which showed similar profiles in the two tissues, occurred first in the endosperm. CBB R-250 staining of 2-DE gels revealed 352 and 369 major protein spots in the embryo and endosperm, respectively, at 0 h. Of these, 75 major spots were selected, excised, in-gel digested with trypsin, and analyzed by MALDI-TOF-MS and/or LC-ESI-Q/TOF-MS/MS. Peptide MS and MS/MS data were searched against publicly available protein and EST databases, and 47 proteins identified. Embryo-specific proteins included a BAC19.13 homologue, whereas four proteins specific to the endosperm were tomato mosaic virus coat proteins related to defense mechanisms. The most abundant proteins both in the embryo and endosperm were seed storage proteins, i.e., legumins (11 spots), vicilins (11 spots), albumin (2 spots). Housekeeping enzymes, actin-binding profilin, defense-related protein kinases, nonspecific lipid transfer protein, and proteins involved in general metabolism were also identified. The roles of some of the proteins identified in the embryo and endosperm are discussed in relation to seed germination in tomato.  相似文献   

5.
6.
Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.  相似文献   

7.
8.
9.
Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role.  相似文献   

10.
11.
12.
13.
Qi L  Yan J  Li Y  Jiang H  Sun J  Chen Q  Li H  Chu J  Yan C  Sun X  Yu Y  Li C  Li C 《The New phytologist》2012,195(4):872-882
? Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. ? Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A.?brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A.?brassicicola infection together lead to an enhanced auxin response in host plants. ? Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. ? Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.  相似文献   

14.
The cell wall determines the shape of plant cells and is also the primary interface for pathogen interactions. The structure of the cell wall can be modified in response to developmental and environmental cues, for example to strengthen the wall and to create barriers to pathogen ingress. The ectopic lignin 1-1 and 1-2 (eli1-1 and eli1-2) mutations lead to an aberrant deposition of lignin, a complex phenylpropanoid polymer. We show that the eli1 mutants occur in the cellulose synthase gene CESA3 in Arabidopsis thaliana and cause reduced cellulose synthesis, providing further evidence for the function of multiple CESA subunits in cellulose synthesis. We show that reduced levels of cellulose synthesis, caused by mutations in cellulose synthase genes and in genes affecting cell expansion, activate lignin synthesis and defense responses through jasmonate and ethylene and other signaling pathways. These observations suggest that mechanisms monitoring cell wall integrity can activate lignification and defense responses.  相似文献   

15.
We isolated a lesion mimic mutant, n ecrotic s potted l esions 1 (nsl1), from Ds-tagged Arabidopsis thaliana accession No-0. The nsl1 mutant exhibits a growth retardation phenotype and develops spotted necrotic lesions on its rosette and cauline leaves. These phenotypes occur in the absence of pathogens indicating that nsl1 mutants may constitutively express defense responses. Consistent with this idea, nsl1 accumulates high levels of callose and autofluorescent phenolic compounds localized to the necrotic lesions. Furthermore RNA gel blot analysis revealed that genes associated with disease resistance activation are upregulated in the nsl1 mutants and these plants contain elevated levels of salicylic acid (SA). Crossing nsl1 with an SA deficient mutant, eds16-1, revealed that the nsl1 lesions and growth retardation are dependent upon SA. The nsl1 phenotypes are not suppressed under either the rar1-10 or sgt1b-1 genetic background. NSL1 encodes a novel 612aa protein which contains a membrane-attack complex/perforin (MACPF) domain, which is conserved in bacteria, fungi, mammals and plants. The possible modes of action of NSL1 protein in negative regulation of cell death programs and defense responses are discussed.  相似文献   

16.
17.
18.
Mutants with altered patterns of lignification have been identified in a population of mutagenised Arabidopsis seedlings. One of the mutants exhibited ectopic lignification (eli) of cells throughout the plant that never normally lignify. The reduced expansion of eli1 cells resulted in a stunted phenotype, and xylem cells were misshapen and failed to differentiate into continuous strands, causing a disorganized xylem. Analysis of phenotypes associated with double mutants of eli1 lit (lion's tail), a cell expansion mutant, indicated that the primary defect in eli1 plants may be inappropriate initiation of secondary wall formation and subsequent aberrant lignification of cells caused by altered cell expansion. Related ectopic lignification phenotypes were also observed in other cell expansion mutants, suggesting a mechanism that senses cell size and controls subsequent secondary wall formation. Interactions between eli1 and wol (woodenleg), a mutant altering xylem cell specification, revealed a role for ELI1 in promoting formation of continuous xylem strands, and demonstrated that ELI1 functions during cell elongation zone in the primary root and other tissues.  相似文献   

19.
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDP-glucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-Orhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.  相似文献   

20.
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号