首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions.  相似文献   

2.
Axial variation of latewood-widths and -stable isotopes (δ13C and δ18O) of a single sessile oak tree (Quercus petraea (Matt.) Liebl.) was analyzed. The influence of sampling height was found to be weak for both, latewood-widths and -stable isotopes in the latewood. The observed trends with stem-height show clearly that possible effects due to cambial aging are overrated by annual effects. In addition, relations between samples from different stem-heights are strong for identical calendar years while they are poor for identical cambial age. This indicates that samples from both, living trees and historical wood can be taken from any height position of a trunk or beam as long they are free from anatomical abnormities. Simple correlation and Gleichläufigkeit were used for validation.  相似文献   

3.
The ecophysiological response of an alpine grassland to recent climate change and increasing atmospheric CO2 concentration was investigated with a new strategy to go back in time: using a time‐series of Capra ibex horns as archives of the alpine grasslands' carbon isotope discrimination (13Δ). From the collection of the Natural History Museum of Bern, horns of 24 males from the population of the Augstmatthorn–Brienzer Rothorn mountains, Switzerland, were sampled covering the period from 1938 to 2006. Samples were taken from the beginning of each year‐ring of the horns, representing the beginning of the horn growth period, the spring. The horns' carbon 13C content (Δ13C) declined together with that of atmospheric CO2 over the 69‐year period, but 13Δ increased slightly (+0.4‰), though significantly (P<0.05), over the observation period. Estimated intercellular CO2 concentration increased (+56 μmol mol?1) less than the atmospheric CO2 concentration (+81 μmol mol?1), so that intrinsic water‐use efficiency increased by 17.8% during the 69‐year period. However, the atmospheric evaporative demand at the site increased by approximately 0.1 kPa between 1955 and 2006, thus counteracting the improvement of intrinsic water‐use efficiency. As a result, instantaneous water‐use efficiency did not change. The observed changes in intrinsic water‐use efficiency were in the same range as those of trees (as reported by others), indicating that leaf‐level control of water‐use efficiency of grassland and forests followed the same principles. This is the first reconstruction of the water‐use efficiency response of a natural grassland ecosystem to last century CO2 and climatic changes. The results indicate that the alpine grassland community has responded to climate change by improving the physiological control of carbon gain to water loss, following the increases in atmospheric CO2 and evaporative demand. But, effective leaf‐level water‐use efficiency has remained unchanged.  相似文献   

4.
Values (Δ(i)) predicted by a simplified photosynthetic discrimination model, based only on diffusion through air followed by carboxylation, are often used to infer ecological conditions from the 13C signature of plant organs (δ13C(p)). Recent studies showed that additional isotope discrimination (d that includes mesophyll conductance, photorespiration and day respiration, and post-carboxylation discrimination) can strongly affect δ13C(p); however, little is known about its variability during plant ontogeny for different species. Effect of ontogeny on leaf gas exchange rates, Δ(i) , observed discrimination (Δ(p)) and d in leaf, phloem and root of seven herbaceous species at three ontogenetic stages were investigated under controlled conditions. Functional group identity and ontogeny significantly affected Δ(i) and Δ(p). However, predicted Δ(i) did not match Δ(p). d, strongly affected by functional group identity and ontogeny, varied by up to 14 ‰. d scaled tightly with stomatal conductance, suggesting complex controls including changes in mesophyll conductance. The magnitude of the changes in δ13C(p) due to ontogeny was similar to that due to environmental factors reported in other studies. d and ontogeny should, therefore, be considered in ecosystem studies, integrated in ecosystem models using δ13C(p) and limit the applicability of δ13C(leaf) as a proxy for water-use efficiency in herbaceous plants.  相似文献   

5.
6.
At eight different dates during the 2000 growing season, δ13C and δ18O were determined in the phloem of adult beech trees growing in natural beech stands in south‐west Germany differing in stand density and local climate. In addition, stand transpiration, precipitation, photosynthetic active radiation, relative air humidity, water pressure deficit of the air, air and soil temperature, soil water potential, and sugar concentration of the phloem sap were determined directly and evaporation and canopy stomatal conductance were modelled. All parameters were related to δ13C. The study aimed to identify the time integral within which the δ13C of organic compounds transported in the phloem is an indicative measure of these environmental influences. δ13C of soluble carbon transported in the phloem was well correlated with mean stomatal conductance in a two‐day integral prior to phloem sampling but did not depend on either light intensity or soil water availability. A strong positive relationship between δ13C and δ18O pointed to observed variation in δ13C of phloem sap being a result of variation in stomatal conductance. Bulk leaf δ13C was a poor indicator of changes in environmental conditions during the growing season. From these results we conclude that the analysis of δ13C in soluble carbon transported in the phloem is a reliable indicator of short‐term changes in Ci/Ca. In contrast, the δ13C of structural carbon in beech foliage represents an integration of a range of factors that mask short‐term influences responsible for Ci/Ca.  相似文献   

7.
Elevated atmospheric CO2 concentration (eCa) might reduce forest water‐use, due to decreased transpiration, following partial stomatal closure, thus enhancing water‐use efficiency and productivity at low water availability. If evapotranspiration (Et) is reduced, it may subsequently increase soil water storage (ΔS) or surface runoff (R) and drainage (Dg), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water‐limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water‐limited Eucalyptus woodland exposed to Free‐Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water‐use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree‐canopy transpiration (Etree), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor) with no increase in ΔS, R or Dg. We computed Et, ΔS, R and Dg from measurements of sapflow velocity, L, soil water content (θ), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree, Efloor, ΔS or θ at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and θ were the main drivers of Efloor while vapour pressure deficit‐controlled Etree, though eCa did not significantly affect any of these relationships. Our results suggest that in the short‐term, eCa does not significantly affect ecosystem water‐use at this site. We conclude that water‐savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water‐limited mature eucalypt woodlands.  相似文献   

8.
9.
Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patterns, we hypothesized that temperature increases will have a greater negative impact on female plants compared with co‐occurring male plants of dioecious species. This hypothesis was tested by examining the whole‐plant carbon and water relations of 10‐year‐old female (= 18) and male (= 13) Acer negundo Sarg. trees grown in a common garden in Salt Lake City, UT. The trees were established from cuttings collected where the growing season temperature averaged about 6.5 °C cooler than at the common garden. During May and June, stem sap flux (Js) was similar between genders, but averaged 25% higher in males during the warmer months of July and August. Daytime canopy stomatal conductance (gs) per unit leaf area was 12% higher in females in May : June, but was 11% higher in males in July : August. We combined measurements of sap flux–scaled transpiration with measurements of tree allometry and δ13C of leaf soluble sugars to estimate whole‐tree carbon assimilation (Atree) and water use efficiency (WUE) (Atree : Etree). Atree was similar between genders until late August when Atree was 32% higher in male trees. Atree : Etree was on average 7% higher in females than in males during the growing season. Patterns of Js, gs, Atree and Atree : Etree in the present study were in contrast to those previously reported for A. negundo genders under native growing season temperatures. Results suggest that the spatial segregation of the sexes could shift under global warming such that female plants lose their dominance in high‐resource habitats, and males increase their dominance in relatively lower‐resource habitats.  相似文献   

10.
Under constant salinity we analysed the leaf characteristics of Laguncularia racemosa (L.) Gaertn. in combination with gas exchange and carbon isotopic composition to estimate leaf water-use efficiency (WUE) and potential nitrogen-use efficiency (NUE). NaCl was not added to the control plants and the others were maintained at salinities of 15 and 30 ‰ (S0, S15, and S30, respectively). Leaf succulence, sodium (Na), nitrogen (N), and chlorophyll (Chl) contents increased under salinity. Salinity had a negative impact on net photosynthetic rate (P N) and stomatal conductance (g s) at high and moderated irradiances. Potential NUE declined significantly (p<0.05) with salinity by 37 and 58 % at S15 and S30, respectively, compared to S0 plants. Conversely, compared to S0 plants, P N/g s increased under saline conditions by 12 % (S15) and 50 % (S30). Thus, WUE inferred from P N/g s was consistent with salinity improved short-term WUE. Long-term leaf WUE was also enhanced by salinity as suggested by significantly increased leaf δ13C with salinity. Improved WUE under salinity explains the eco-physiological success of mangrove species under increasing salinity. Conversely, decline in NUE may pose a problem for L. racemosa under hyper-saline environments regardless of N availability.  相似文献   

11.
A 150‐year‐long record of intrinsic water‐use efficiency (Wi) was derived from community‐level carbon isotope discrimination (13Δ) in the herbage of the unfertilized, unlimed control treatment (plot 3) of the Park Grass Experiment at Rothamsted (England) between 1857 and 2007. 13Δ during spring growth (first cut harvested in June) averaged 21.0‰ (±0.5‰ SD) and has not shown a long‐term trend (P=0.5) since 1857. 13Δ of summer/autumn growth (second cut harvested between September and November) increased from 21.3‰ to 22.0‰ (P < 0.001) between 1875 and 2007. Wi during spring growth has therefore increased by 33% since the beginning of the experiment, and Wi of summer/autumn growth has increased by 18%. The variation in 13Δ was mainly related to weather conditions. Plant available soil water explained 51% and 40% of the variation in spring growth 13Δ and summer/autumn growth 13Δ, respectively. In the 1857–2007 period yields have not increased, suggesting that community‐level photosynthesis has not increased either. Therefore, the increased Wi probably resulted from a decreased stomatal conductance. Vapour pressure deficit (VPD) during spring growth (March–June) has not changed since 1915, meaning that instantaneous water‐use efficiency (Wt) in spring time has increased and transpiration has probably decreased, provided that leaf temperature followed air temperature. Conversely, VPD in the months between the first and second cut has increased by 0.07 kPa since 1915, offsetting the effect of increased Wi on Wt during summer and early autumn. Our results suggest that vegetation has adjusted physiologically to elevated CO2 by decreasing stomatal conductance in this nutrient‐limited grassland.  相似文献   

12.
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water‐limited, rain‐fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m?2 s?1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water‐use efficiencies were higher (2.4–8.1 mmol mol?1) than C3 averages (0.7–6.8 mmol mol?1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are important for understanding the advantages of C4 photosynthesis under field conditions.  相似文献   

13.
This study investigated the influence of meteorological, pedospheric and physiological factors on the water relations of Scots pine, as characterized by the origin of water taken up, by xylem transport as well as by carbon isotope discrimination (Delta13C) and oxygen isotope enrichment (Delta18O) of newly assimilated organic matter. For more than 1 year, we quantified delta2H and delta18O of potential water sources and xylem water as well as Delta13C and Delta18O in twig and trunk phloem organic matter biweekly, and related these values to continuously measured or modelled meteorological parameters, soil water content, stand transpiration (ST) and canopy stomatal conductance (G(s)). During the growing season, delta18O and delta2H of xylem water were generally in a range comparable to soil water from a depth of 2-20 cm. Long residence time of water in the tracheids uncoupled the isotopic signals of xylem and soil water in winter. Delta18O but not Delta13C in phloem organic matter was directly indicative of recent environmental conditions during the whole year. Delta18O could be described applying a model that included 18O fractionation associated with water exchange between leaf and atmosphere, and with the production of organic matter as well as the influence of transpiration. Phloem Delta13C was assumed to be concertedly influenced by G(s) and photosynthetically active radiation (PAR) (as a proxy for photosynthetic capacity). We conclude that isotope signatures can be used as effective tools (1) to characterize the seasonal dynamics in source and xylem water, and (2) to assess environmental effects on transpiration and G(s) of Scots pine, thus helping to understand and predict potential impacts of climate change on trees and forest ecosystems.  相似文献   

14.
Climate projections propose that drought stress will become challenging for establishing trees. The magnitude of stress is dependent on tree species, provenance, and most likely also highly influenced by soil quality. European Beech (Fagus sylvatica) is of major ecological and economical importance in Central European forests. The species has an especially wide physiological and ecological amplitude enabling growth under various soil conditions within its distribution area in Central Europe. We studied the effects of extreme drought on beech saplings (second year) of four climatically distinct provenances growing on different soils (sandy loam and loamy sand) in a full factorial pot experiment. Foliar δ13C, δ15N, C, and N as well as above‐ and belowground growth parameters served as measures for stress level and plant growth. Low‐quality soil enhanced the effect of drought compared with qualitatively better soil for the above‐ and belowground growth parameters, but foliar δ13C values revealed that plant stress was still remarkable in loamy soil. For beeches of one provenance, negative sandy soil effects were clearly smaller than for the others, whereas for another provenance drought effects in sandy soil were sometimes fatal. Foliar δ15N was correlated with plant size during the experiment. Plasticity of beech provenances in their reaction to drought versus control conditions varied clearly. Although a general trend of declining growth under control or drought conditions in sandy soil was found compared to loamy soil, the magnitude of the effect of soil quality was highly provenance specific. Provenances seemed to show adaptations not only to drought but also to soil quality. Accordingly, scientists should integrate information about climatic pre‐adaptation and soil quality within the home range of populations for species distribution modeling and foresters should evaluate soil quality and climatic parameters when choosing donor populations for reforestation projects.  相似文献   

15.
We investigated the tree growth and physiological response of five pine forest stands in relation to changes in atmospheric CO2 concentration (ca) and climate in the Iberian Peninsula using annually resolved width and δ13C tree‐ring chronologies since ad 1600. 13C discrimination (Δ≈ci/ca), leaf intercellular CO2 concentration (ci) and intrinsic water‐use efficiency (iWUE) were inferred from δ13C values. The most pronounced changes were observed during the second half of the 20th century, and differed between stands. Three sites kept a constant ci/ca ratio, leading to significant ci and iWUE increases (active response to ca); whereas a significant increase in ci/ca resulted in the lowest iWUE increase of all stands at a relict Pinus uncinata forest site (passive response to ca). A significant decrease in ci/ca led to the greatest iWUE improvement at the northwestern site. We tested the climatic signal strength registered in the δ13C series after removing the low‐frequency trends due to the physiological responses to increasing ca. We found stronger correlations with temperature during the growing season, demonstrating that the physiological response to ca changes modulated δ13C and masked the climate signal. Since 1970 higher δ13C values revealed iWUE improvements at all the sites exceeding values expected by an active response to the ca increase alone. These patterns were related to upward trends in temperatures, indicating that other factors are reinforcing stomatal closure in these forests. Narrower rings during the second half of the 20th century than in previous centuries were observed at four sites and after 1970 at all sites, providing no evidence for a possible CO2‘fertilization’ effect on growth. The iWUE improvements found for all the forests, reflecting both a ca rise and warmer conditions, seem to be insufficient to compensate for the negative effects of the increasing water limitation on growth.  相似文献   

16.
Field‐scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a seminatural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short‐term responses of the nitrogen (N) cycle after 2 years of treatments. Elevated CO2 significantly affected aboveground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co‐dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Belowground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue in response to elevated CO2, as well as drought‐induced decreases in litter N production and fauna N mineralization prevailed in the full treatment combination. Overall, the simulated future climate scenario therefore lead to reduced N turnover, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration.  相似文献   

17.
We report an analysis of both the long‐ and short‐term drivers of the carbon (C) isotope composition (δ13C) values of current year needles of Pinus sylvestris L. linked to changing atmospheric carbon dioxide (CO2) concentrations (ca) and climate using data from a uniquely long‐term nitrogen (N) fertilization experiment in the north of Sweden (consisting of three N dosage levels and a control treatment) from 1970 until 2002. N loading produced trees with less negative δ13C of foliage, by around 0.45‰ on average, with the difference in δ13C between control and N treatments not dependant upon N dosage. The average δ13C values decreased at a rate of around 0.03‰ yr−1, even after accounting for the Suess effect (the decrease in the atmospheric CO2δ13C due to anthropogenic emissions of isotopically light CO2). This decrease is large enough to cause a significant, progressive change in the δ13C down through a soil profile. Modelled values of plant intrinsic water use efficiency (WUEi) and the ratio of leaf internal to external [CO2] (ci/ca) showed that this was the result of ci increasing in parallel with ca (while ci/ca increased), thus causing little change in WUEi over the 32 years of study. The residuals from the relationships between year and δ13C were used to examine the impact of climate on the interannual variation of C isotope composition of needles. This included the use of a fire hazard index (FHI) model, which integrates climatic factors known to influence plant stomatal conductance and hence δ13C. The FHI produced the best fit with δ13C values when climate data were averaged over the whole growth season (for control plots) and for July for all the N treatments, explaining ca. 60% of the total interannual variation in δ13C. Further, trees from the N treatments appeared more susceptible to air‐humidity‐based climate parameters, as seen from higher correlation coefficients, than were control trees. Thus, our data suggest the possibility of increased susceptibility to drought conditions in ecosystems with moderate to high N deposition rates. Also, there is the possibility that, because there was no apparent change in WUEi of P. sylvestris in this ecosystem over the last 32 years, the rate of sequestration of C into boreal ecosystems may not increase with ca, as has been predicted.  相似文献   

18.
Under the increase in atmospheric CO2 during the last century, variable increases in the intrinsic water‐use efficiency (Wi), i.e., the ratio between carbon assimilation rate (A) and stomatal conductance (gs), of C3 vegetation have been observed. Here, we ask if long‐term nutrient status and especially nitrogen supply have an effect on the CO2 response of Wi in a temperate seminatural C3 grassland. This analysis draws on the long‐term trends (1915–2009) in Wi, derived from carbon isotope analysis, of archived hay and herbage from the Park Grass Experiment at Rothamsted (South‐East England). Plant samples came from five fertilizer treatments, each with different annual nitrogen (N; 0, 48 or 96 kg ha?1), phosphorus (P; 0 or 35 kg ha?1) and potassium (K; 0 or 225 kg ha?1) applications, with lime as required to maintain soil pH near 7. Carbon isotope discrimination (13Δ) increased significantly (P < 0.001) on the Control (0.9‰ per 100 ppm CO2 increase). This trend differed significantly (P < 0.01) from those observed on the fertilized treatments (PK only: 0.4‰ per 100 ppm CO2 increase, P < 0.001; Low N only, Low N+PK, High N+PK: no significant increase). The 13Δ trends on fertilized treatments did not differ significantly from each other. However, N status, assessed as N fertilizer supply plus an estimate of biologically fixed N, was negatively related (r2 = 0.88; P < 0.02) to the trend for 13Δ against CO2. Other indices of N status exhibited similar relationships. Accordingly, the increase in Wi at High N+PK was twice that of the Control (+28% resp. +13% relative to 1915). In addition, the CO2 responsiveness of 13Δ was related to the grass content of the plant community. This may have been due to the greater CO2 responsiveness of gs in grasses relative to forbs. Thus, the greater CO2 response of grass‐rich fertilized swards may be related to effects of nutrient supply on botanical composition.  相似文献   

19.
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.  相似文献   

20.
The location of the Pohang Basin near the Korea Strait in the southwest of the Sea of Japan (East Sea) makes this area appropriate for providing a record of paleoenvironmental/biotic changes associated with the early Neogene (16.5 Ma) opening of this gateway to the Pacific Ocean. Stable isotopic and planktonic foraminiferal records are presented that assist with the understanding of paleoenvironmental changes in the Sea of Japan resulting from the opening of the Korea Strait. The oldest sediments of early Neogene age of the Pohang Basin overlie Cretaceous basement and are Early Miocene (>16.5 Ma) shallow, estuarine facies containing a benthic foraminiferal assemblage dominated by Ammonia beccarii (L.). The oldest early Neogene planktonic foraminiferal assemblages in the basin are 16.5 Ma in age (latest Early Miocene foraminiferal zone N8). The migration of these planktonic assemblages to the Sea of Japan at that time appears to have resulted from the initial opening of the Korea Strait. The overlying early Neogene marine sequence of the Pohang Basin extends from 16.5 Ma (Zone N8) through 14 Ma (Zone N10). Change in the oxygen isotopic record of the Pohang Basin sequence suggests strong local paleoenvironmental control related to the early opening of the Korea Strait. Early Middle Miocene isotopic temperatures of planktonic foraminifera are relatively cool at 15 Ma at a time when global temperatures were high in the middle/low latitude regions. It was not until 14.8 Ma that isotopic temperatures of planktonic foraminifera increased markedly. This distinct warming is inferred to reflect the major intrusion of the Kuroshio Current into the Sea of Japan probably as a result of further critical opening and deepening of the Korea Strait. At this time planktonic foraminifera increased in abundance reflecting expanding oceanic influence. A cooling that followed at 14.5 Ma, when the strait was well open is unlikely to reflect local tectonic control on the paleoceanography, but global cooling during the early Middle Miocene associated with the expansion of the East Antarctic ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号