首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pectinase activity was localized at the ultrastructural level in pollen mother cells of tobacco (Nicotiana tabacum L.) during meiotic prophaseⅠto elucidate its role in the biogenesis of secondary plasmodesma (sPD) and cytoplasmic channel (CC). At the leptotene stage the enzyme was mainly present in the cisternae of smooth endoplasmic reticulum (SER) and their derived vesicles, but absent in the Golgi body and Golgi vesicles. Later at the zygotene stage, when sPDs and CCs were actively formed, strong pectinase activity was observed not only in the SER cisternae and their derived vesicles but also in the cell wall, especially in the vicinity of or within both simple and branched plasmodesmata, notably along the middle lamellae, which also characterized the sites of CCs being formed. The presence of exocytotic vesicles containing reaction products suggests that pectinase shares the same excretive pathway as that used by cellulase for its delivery into the wall, i.e. in active form via smooth endoplasmic reticulum (ER) and its derived vesicles by exocytosis. In combination with cellulase, pectinase also promotes the secondary formation of plasmodesmata and CCs by specifically digesting the pectin in middle lamella.  相似文献   

2.
Summary De novo formation of cytoplasmic cell connections are studied at the graft interface of 5 day old in vitro heterografts ofVicia faba onHelianthus annuus. Continuous and half plasmodesmata, both branched and unbranched, are described at various stages of development in non-division walls between unlike and like dedifferentiated callus cells. In apical portions of protruding callus cells and in the contact zone between opposing cells extremely thin wall parts with a striking ER/plasmalemma contact are observed. During subsequent thickening of the modified wall parts cytoplasmic strands enclosing constricted ER cisternae are entrapped within the newly deposited wall material. These cytoplasmic strands represent half plasmodesmata which—in case of fusion with corresponding structures of adjoining cells across the loosened wall matrix — form continuous cell connections. Golgi vesicles secreting wall material are involved in the process of forming half and continuous plasmodesmata, thus following the same mechanism of plasmodesmata development as described for isolated protoplasts in cell cultures. The findings suggest the existence of a unifying mechanism of secondary formation of plasmodesmata showing far-reaching similarities with the establishment of primary cell connections.  相似文献   

3.
Pectinase and cellulase activities are involved in a number of intercellular space-forming processes in plants. In this study, we combined cytochemistry with ultrastructural analysis to investigate the ontogeny of secretory cavity in fruits of Citrus medica L. var. sarcodactylis (Noot.) Swingle, Citrus reticulata Blanco and Citrus limon (L.) Burm. f. Pectinase activity was first detectable at the initial stage of cavity formation, peaked at the intercellular space-forming stage, and diminished at the following stages. In comparison, no cellulase activity was detected until the early lumen-expanding stage. The cellulase activity increased at the late lumen-expanding stage and culminated at the near-mature stage. In the fruit of C. medica var. sarcodactylis, the distribution of pectinase and cellulase reaction products was restricted to the endoplasmic reticulum (ER), the vesicles derived from ER and the cell wall. We also observed that multivesicular structure containing the pectinase reaction product at the initial stage of cavity formation. Our results suggest that pectinase and cellulase are synthesized on ER and secreted directly into the cell wall through exocytosis of ER-derived vesicles. Our observations are consistent with the notion that the secretory cavity in Citrus fruits is formed through a schizolysigenous process in which pectinase activity is involved in the degradation of the middle lamella, whereas cellulase activity is responsible for the degradation of the cell wall.  相似文献   

4.
The cytochemical localization of ATPase in differentiating and mature phloem cells of Pisum sativum L. has been studied using a lead precipitation technique. Phloem transfer cells at early stages of differentiation exhibit strong enzyme activity in the endoplasmic reticulum (ER) and some reaction product is deposited on the vacuolar and plasma membranes. As the phloem transfer cells mature and develop their characteristic wall structures, strong enzyme activity can be observed in association with the plasma membranes and nuclear envelopes. Mature phloem transfer cells with elaborate cell-wall ingrowths show ATPase activity evenly distributed on plasma-membrane surfaces. Differentiating sieve elements show little or no enzyme activity. When sieve elements are fully mature they have reaction product in the parietal and stacked cisternae of the ER. There is no ATPase activity associated with P-protein at any stage of sieve-element differentiation or with the sieve-element plasma membranes. It is suggested that the intensive ATPase activity on the plasma membranes of the transfer cells is evidence for a transport system involved in the active movement of photosynthetic products through these cells.Key to labeling in the figures ER endoplasmic reticulum - P parenchyma cell - PP P-protein - SE sieve element - SPP sieve-plate pore - TC transfer cell  相似文献   

5.
In leaf blades of Zea mays L. plasmodesmata between mesophyll cells are aggregated in numerous thickened portions of the walls. The plasmodesmata are unbranched and all are characterized by the presence of electron-dense structures, called sphincters by us, near both ends of the plasmodesmatal canal. The sphincters surround the desmotubule and occlude the cytoplasmic annulus where they occur. Plasmodesmata between mesophyll and bundle-sheath cells are aggregated in primary pit-fields and are constricted by a wide suberin lamella on the sheath-cell side of the wall. Each plasmodesma contains a sphincter on the mesophyll-cell side of the wall. The outer tangential and radial walls of the sheath cells exhibit a continuous suberin lamella. However, on the inner tangential wall only the sites of plasmodesmatal aggregates are consistently suberized. Apparently the movement of photosynthetic intermediates between mesophyll and sheath cells is restricted largely or entirely to the plasmodesmata (symplastic pathway) and transpirational water movement to the cell walls (apoplastic pathway).Abbreviation ER endoplasmic reticulum  相似文献   

6.
Summary Both tunicamycin, an inhibitor of N-linked glycosylation of proteins, and cyclopiazonic acid, which inhibits the Ca2+-dependent ATPase in the ER, influence the secretory pathway at the ER level and lead to a cessation of cell growth inMicrasterias. Electron microscopical investigations reveal that the mode of action of the two inhibitors differs. While tunicamycin treatment results in a disintegration of the Golgi bodies into small vesicles, cyclopiazonic acid prevents products being supplied from the ER, resulting in the dilatation of ER cisternae and a reduction in the number of Golgi cisternae, combined with a loss of dictyosomal activity. The disturbed cell wall formation under tunicamycin indicates that N-linked glycosylation of proteins is required for normal cell growth inMicrasterias. Moreover, our studies reveal that changes in cytoplasmic free calcium concentration, as a consequence of ATPase inhibition in the ER by cyclopiazonic acid, may inhibit wall material secretion by interrupting the normal ER-dictyosome association.Abbreviations CPA cyclopiazonic acid - ER endoplasmic reticulum - TM tunicamycin  相似文献   

7.
McFarlane HE  Young RE  Wasteneys GO  Samuels AL 《Planta》2008,227(6):1363-1375
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.  相似文献   

8.
Summary The development of pit-pairs between differentiating xylem cells has been examined by transmission electron microscopy in young shoots ofSorbus torminalis. In some vessel-to-tracheid pits, as well as in previously studied intertracheid pits, a thickening of the pit membrane containing branched plasmodesmata was observed. A secondary wall-like cap was deposited over the thickening prior to cytoplasmic autolysis; some plasmodesmata, parallel to the plane of section, appeared to perforate the cap. At the end of the cell maturation stage, the central part of the primary wall thickening was hydrolysed, while the cap, including plasmodesmata remnants, appeared unaltered. In half-bordered pit-pairs between a parenchyma cell and a vessel or a tracheid, similar structures could be observed beside the conducting elements. When the vessel or tracheid matured, sealing of the pit membrane plasmodesmata resulted from the formation of a protective layer on the parenchyma-side rather than from the deposition of a cap on the conducting cell-side. These observations provide the first information on the presence of symplasmic connections in pits between differentiating vessels and neighbouring xylem cells. InS. torminalis, xylem differentiation is probably highly coordinated within a symplasmic domain; the persistence of such connections may account for the lack of specialization ofSorbus wood.  相似文献   

9.
W. Eschrich  J. Fromm  R. F. Evert 《Protoplasma》1992,167(3-4):145-151
Summary For the histochemical localization of nucleoside triphosphatases at the electron microscopic level, prefixed tissues were incubated with lead nitrate in addition to substrate (GOMORI reaction). While ATP and UTP as substrates gave electron-dense reaction products at the plasmalemma of sieve tubes, companion cells and phloem parenchyma cells, and at plasmodesmata in primary pitfields, AMP gave reaction products only at the tonoplast of parenchyma cells. Since electron-dense deposits also occur in cell walls and vacuoles, energy dispersive X-ray microanalysis was used to distinguish between lead deposits and lead-phosphate deposits. The latter were restricted to the symplast. Among the three plant species used, the leaf bundle phloem ofHordeum distichon showed ATPase activity largely restricted to the phloem cells, except for the thickwalled sieve tubes. Some activity also bordered the chloroplasts of the bundle sheath cells. In the C4 plantGomphrena globosa, ATPase and UTPase activities appeared to be the greater in phloem parenchyma cells than in sieve tubes. In the phloem of youngMonstera deliciosa roots, ATPase occurred not only at the plasmalemma of sieve tubes, but also around sieve-tube plastids. When compared with AMP as substrate, it appears that nucleoside triphosphates are the natural substrates of the enzyme(s) in the plasmalemma of sieve tubes and phloem parenchyma cells.  相似文献   

10.
Summary In situ hybridization has been used to locate mRNA, for the storage protein legumin, in cotyledon storage parenchyma tissue of developing pea (Pisum sativum L.) seeds. The mRNA was hybridized with a biotinylated probe of cDNA in pBR 322 and subsequently located by avidin conjugates. Avidin-rhodamine was used for fluorescence microscopy localization at a tissue/cellular level and avidin-peroxidase (with DAB) and avidin-ferritin compared for localization at an ultrastructural level. Specific fluorescence associated with avidin-rhodamine was distributed unevenly throughout the cytosol but the cell walls, starch grains, vacuoles and protein deposits were unstained. The sizes and distribution of the regions of higher labeling within the cytosol suggest an association with elements of the endomembrane system. Following DAB reaction of the specifically localized avidin-peroxidase most, although not all, stain product was associated with the endoplasmic reticulum. The ER-associated reaction product was also accumulated within the ER lumen.Avidin-ferritin was also localized both in the cytosol and in association with the endoplasmic reticulum, although was less readily visualized in cells with a conventional ultrastructural appearance.Localization of avidin-ferritin was more readily visualized in cells which had undergone some limited structural damage during specimen preparation. In such cases ferritin was also shown to be specifically associated with the transition vesicles and trans-face peripheral vesicles of some dictyosomes.  相似文献   

11.
Localisation of -amylase (EC 3.2.1.1.) in low-temperature-embedded isolated barley (Hordeum vulgare L.) aleurone has been achieved using rhodamine-labelled secondary antibodies and the protein A-gold technique. Treatment with gibberellic acid (GA3) resulted in an increase of immunofluorescence in the cytoplasm of aleurone cells and also its appearance in specific regions of the cell walls. Cytoplasmic label was neither perinuclear nor associated specifically with aleurone grains as had been found in earlier work, but was present throughout the cytoplasm of all cells. A relatively high level of labelling occurred in hydrolysed wall regions. Label was also associated with plasmodesmata in both hydrolysed and unhydrolysed wall regions. The pattern of labelling indicates that -amylase is released from aleurone via digested wall channels and that, except for the inner wall layer, unhydrolysed regions are impermeable to the enzyme. It is suggested that the resistant wall tubes around plasmodesmata may facilitate enzyme release by providing a pathway for transfer, especially of wall hydrolases, into the more impermeable parts of the wall.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - RER rough endoplasmic reticulum  相似文献   

12.
Ultrastructural localization of peroxidatic activity was investigated in the chytrid Entophlyctis variabilis with the 3,3-diaminobenzidine (DAB) cytochemical prodedure. The subcellular distribution of reaction product varied with changes in pH of the DAB medium and with the developmental stage of the fungus. Incubations in the DAB reaction medium at pH 9.2 produced an electron dense reaction product within single membrane bounded organelles which resembled microbodies but which varied in shapes from elongate to oval. At this pH the cell wall also stained darkly. When the pH of the DAB medium was lowered to pH 8.2 or 7.0, DAB oxidation product was localized within mitochondrial cristae as well as in microbodies and zoosporangial walls. As soon as zoospores were completely cleaved out of the zoosporangial cytoplasm, endoplasmic reticulum (ER) also stained. When the wall appeared around the encysted zoospore, ER staining was no longer found. The influence of the catalase inhibitor, aminotriazole, and the inhibitors of heme enzymes, sodium azide and sodium cyanide, on the staining patterns within cells incubated in the DAB media indicates that microbody staining is due to both catalase and peroxidase, mitochondrial staining is due to cytochrome c, and ER staining is due to peroxidase.Abbreviations DAB 3,3-diaminobenzidine-HCl - ER endoplasmic reticulum  相似文献   

13.
Fine structure of plasmodesmata in mature leaves of sugarcane   总被引:1,自引:0,他引:1  
The fine structure of plasmodesmata in vascular bundles and contiguous tissues of mature leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) was studied with the transmission electron microscope. Tissues were fixed in glutaraldehyde, with and without the addition of tannic acid, and postfixed in OsO4. The results indicate that the fine structure of plasmodesmata in sugarcane differs among various cell combinations in a cell-specific manner, but that three basic structural variations can be recognized among plasmodesmata in the mature leaf: 1) Plasmodesmata between mesophyll cells. These plasmodesmata possess amorphous, electron-opaque structures, termed sphincters, that extend from plasma membrane to desmotubule near the orifices of the plasmodesmata. The cytoplasmic sleeve is filled by the sphincters where they occur; elsewhere it is open and entirely free of particulate or spokelike components. The desmotubule is tightly constricted and has no lumen within the sphincters, but between the sphincters it is a convoluted tubule with an open lumen. 2) Plasmodesmata that traverse the walls of chlorenchymatous bundle-sheath cells and mestome-sheath cells. In addition to the presence of sphincters, these plasmodesmata are modified by the presence of suberin lamellae in the walls. Although the plasmodesmata are quite narrow and the lumens of the desmotubules are constricted where they traverse the suberin lamellae, the cytoplasmic sleeves are still discernible and appear to contain substructural components there. 3) Plasmodesmata between parenchymatous cells of the vascular bundles. These plasmodesmata strongly resemble those found in the roots of Azolla, in that their desmotubules are closed for their entire length and their cytoplasmic sleeves appear to contain substructural components for their entire length. The structural variations exhibited by the plasmodesmata of the sugarcane leaf are compared with those proposed for a widely-adopted model of plasmodesmatal structure.Abbreviation ER endoplasmic reticulum This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

14.
The nucellar ultrastructure of apomictic Panicum maximum was analyzed during the meiocytic stage and during aposporous embryo sac formation. At pachytene the megameiocyte shows a random cell organelle distribution and sometimes only an incomplete micropylar callose wall. The chalazal nucellar cells are meristematic until the tetrad stage. They can turn into initial cells of aposporous embryo sacs. The aposporous initials can be recognized by their increased cell size, large nucleus, and the presence of many vesicles. The cell wall is thin with few plasmodesmata. If only a sexual embryo sac is formed, the nucellar cells retain their meristematic character. The aposporous initial cell is somewhat comparable to a vacuolated functional megaspore. It shows large vacuoles around the central nucleus and is surrounded by a thick cell wall without plasmodesmata. In the mature aposporous embryo sac the structure of the cells of the egg apparatus is similar to each other. In the chalazal part of the egg apparatus the cell walls are thin and do not hamper the transfer of sperm cells. Structural and functional aspects of nucellar cell differentiation and aposporous and sexual embryo sac development are discussed.  相似文献   

15.
Summary Intercompartmental transport of secreted proteins in yeast was analysed using invertase mutants. Deletions and insertions at the BamHI (position +787) or the Asp718 (position +1159) sites of the SUC2 gene led to mutant proteins with different behaviour regarding secretion, localization and enzyme activity. The deletion mutants showed accumulation of core glycosylated material in the endoplasmic reticulum (ER) a decrease of secreted protein by 5%–30% and loss of enzyme activity. The secreted material was localized in the culture medium and not — as is normal for invertase-in the cell wall. No delay in transport from the Golgi to the cell surface was observed, indicating that the rate-limiting step for secretion is at the ER-Golgi stage. Two insertion mutants, pIPA and pIPB, retained enzyme activity. Mutant pIPB showed 10% secretion, while 60%–70% secretion was observed for pIPA. While the non-secreted material accumulated in the ER, the secreted material was present in the cell wall. The results suggest that the presence of structures incompatible with secretion leads to ER accumulation of mutated invertase.  相似文献   

16.
The acid phosphatase activity during carposporogenesis inGigartina and tetrasporogenesis inChondria was studied using the Gomori technique. During the first steps of gonimoblast maturation ofGigartina, portions of cytoplasm are ensheathed by ER cisternae with acid phosphatase activity, giving rise to autolysosomal concentric membrane bodies. In a similar way large mucilage sacs are severed. They extrude their contents in a kind of exocytosis. Multivesicular bodies, concentrically arranged cisternae and extracytoplasmic compartments, each with acid phosphatase activity, remain in young carpospores for some time, probably as remnants of the autophagocytotic and exocytotic events. The Golgi apparatus is poorly developed in gonimoblast cells and young carpospores. It becomes a prominent cell component in maturing carpospores and then participates in cell wall formation. Only some of the dictyosomal cisternae contain acid phosphatase; these are irregularly distributed in the dictyosome. — In pre- and postmeiotic tetraspore mother cells ofChondria massive lead deposits are found in the dictyosomes and in adjacent Golgi vesicles. Finer lead precipitates occur in ER cisternae, especially in those which are sequestering starch-grain-containing portions of the cytoplasm to give rise to autolysosomes. During cell cleavage, the dictyosomes aggregate. They become devoid of acid phosphatase activity with the exception of vesicles at the trans face. Later, Golgi stacks associate and have common, Gomori positively reacting, narrow cisternae at the cis face. The Golgi apparatus derived cored vesicles do not contain lead precipitates whereas the Golgi cisternae in the final stage of tetrasporogenesis show acid phosphatase activity. Variations in acid phosphatase distribution are explained in the light of current models of membrane flow.Dedicated to Univ.-Prof. DrO. Härtel on the occasion of his 80th birthday.  相似文献   

17.
It is generally accepted that higher plants evolved from ancestral forms of the modern charophytes. For this reason, we chose the characean alga, Chara corallina Klein ex Willd., em. R.D.W. (C. australis R. Br.), to determine whether this transition species produces plasmodesmata in a manner analogous to higher plants. As with higher plants and unlike most green algae, Chara utilizes a phragmoplast for cell division; however, in contrast with the situation in both lower and higher vascular plants, the developing cell plate and newly formed cell wall were found to be completely free of plasmodesmata. Only when the daughter cells had separated completely were plasmodesmata formed across the division wall. Presumably, highly localized activity of wall-degrading (or loosening) enzymes inserted into the plasma membrane play a central role in this process. In general appearance characean plasmodesmata are similar to those of higher plants with the notable exception that they lack an appressed endoplasmic reticulum. Further secondary modifications in plasmodesmal structure were found to occur as a function of cell development, giving rise to highly branched plasmodesmata in mature cell walls. These findings are discussed in terms of the evolution of the mechanism for plasmodesmata formation in algae and higher plants.This work was supported in part by National Foundation grant No. DCB-9016756 (W.J.L.). We thank the Electron Microscopy Center of Washington State University and the Zoology Department, University of California, Davis, for the use of their microscopy facilities.  相似文献   

18.
The regularity of the presence of plasmodesmata channels in the pollen mother cells of lily was studied by transmission and scanning electron microscopy. A few plasmodesmata channels can be recognized between the pollen mother cells at leptotene stage, which increase in number at zygotene and expand in width at synizesis and they lie in the range 0.5—1 μm. Massive chromatin substance are transferred from one pollen mother cell to another during synizesis. The pre-existing plasmodesmate channels close again at late pachytene. There are no channels from metaphase Ⅰ to tetrad stage. Finally, the relation between the presence of plasmodesmata channels, synizesis and cytomixis were discussed.  相似文献   

19.
Summary The ultracytochemical localization of X-prolyldipeptidyl (amino)peptidase (DPP) activity was studied in a late exponential culture of a haploid () wild-type strain of Saccharomyces cerevisiae and its pep4-3 mutant. Yeast cells were fixed for 20 min in cold 1% glutaraldehyde buffered with 50 mM TES buffer to pH 7.0 and then incubated for 80 min with 1.2 mM l-alanyl-l-proline-4-methoxy-2-naphthylamide (Ala-Pro-MNA) or Lys-Pro-MNA as cytochemical substrates plus 0.06% hexazonium p-rosaniline (HPR) buffered with 160 mM cacodylate to pH 7.0. The osmiophilic azoindoxyl complex was formed by coupling HPR with MNA liberated by DPP activity and was then osmicated during an overnight post-fixation of cells in cold 1% OsO4. In the wild-type strain, conspicuous deposits of DPP reaction product were observed in vacuolar membranes. When compared with the parent strain, the pep4-3 mutant cells were enriched in endoplasmic reticulum (ER), cytoplasmic lipoprotein, and microcompartments: membranous vesicles and microglobules. In the mutant, DPP reaction product was found in about 50% of non-vacuolated cells at the following sites: the nuclear envelope, polar layers of ER sheets and of membranous vesicles (diameter, 40–90 nm), the surface or the lumen of these vesicles, the cytoplasmic membrane (under some bud scars) and the periplasmic space. The largest amount of reaction product was found in microglobules (diameter, 20–50 nm) that were mainly observed in the cytoplasmic matrix but were also present in nuclei (nucleoli) and mitochondria. These microglobules had a single-line boundary and appeared to be composed of lipoprotein. The surface ultrastructure of sectioned microglobules in the cytoplasmic matrix was similar to that of the coated vesicles found in mammalian cells. Only sparse amounts of DPP reaction product were seen in budding yeast. In all pep4-3 cells with electron-lucent vacuoles, the reaction product was confined to the vacuolar membranes (i.e. homologous to the ER), microglobules and the periplasmic space. Polysaccharides with free vic-groups were shown by the cytochemical reaction to be present on the surface of ER membranes, in microglobules, in the periplasmic space and in the cell wall. Our cytochemical results indicate that microglobules participate in the exocytosis of both DPP and glycoproteins, and reveal new features of vacuolar morphogenesis in yeast.Abbreviations used DPP X-prolyl-dipeptidyl (amino)peptidase - ER endoplasmic reticulum - HPR hexazonium p-rosaniline - MNA 4-methoxy-2-nyphthylamide - pNA p-nitroanilide - TES N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid  相似文献   

20.
The localization and intensity of cytoplasmic and apoplasticdeposits of phenolic compounds in Brassica napus L. change betweenembryogenesis and 36 h after seed germination. In the late stageof embryogenesis there were no phenolic compounds that wouldbe precipitated with caffeine, located either in the cytoplasmor outside the plasmalemma. Seeds collected at this stage rotduring germination. During seed maturation phenolic compoundswere localized in small vesicles which correspond to vesicular-shapedendoplasmic reticulum (ER) characteristic of this stage. Thiswas followed by slightly larger deposits in vacuoles, and inmature seed dark deposits accumulated outside the plasmalemma.In these dormant seeds the deposits were thus mostly betweenthe plasmalemma and the cell wall. After 3 h in water such darkdeposits appeared outside the cell wall on the embryo surface.After 6 h the cytoplasmic deposits were very few, and after24 h deposits reappeared in the round vesicles and long ER cisternae.After 36 h, when the emerging radicle and hypocotyl were 3 mmlong, there were large deposits of phenolic compounds in thevacuoles of various sizes. The occurrence of these depositsparalleled the previously demonstrated waves of embryo activityat the same stages of development, such as mitoses, synthesisof DNA, RNA, and protein, and mobilization of storage material. Embryogenesis, phenolic compounds, germination, seedling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号