首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ubiquitin–proteasome pathway plays an important role in DNA damage signaling and repair by facilitating the recruitment and activation of DNA repair factors and signaling proteins at sites of damaged chromatin. Proteasome activity is generally not thought to be required for activation of apical signaling kinases including the PI3K-related kinases (PIKKs) ATM, ATR, and DNA-PK that orchestrate downstream signaling cascades in response to diverse genotoxic stimuli. In a previous work, we showed that inhibition of the proteasome by MG-132 suppressed 53BP1 (p53 binding protein1) phosphorylation as well as RPA2 (replication protein A2) phosphorylation in response to the topoisomerase I (TopI) poison camptothecin (CPT). To address the mechanism of proteasome-dependent RPA2 phosphorylation, we investigated the effects of proteasome inhibitors on the upstream PIKKs. MG-132 sharply suppressed CPT-induced DNA-PKcs autophosphorylation, a marker of the activation, whereas the phosphorylation of ATM and ATR substrates was only slightly suppressed by MG-132, suggesting that DNA-PK among the PIKKs is specifically regulated by the proteasome in response to CPT. On the other hand, MG-132 did not suppress DNA-PK activation in response to UV or IR. MG-132 blocked the interaction between DNA-PKcs and Ku heterodimer enhanced by CPT, and hydroxyurea pre-treatment completely abolished CPT-induced DNA-PKcs autophosphorylation, indicating a requirement for ongoing DNA replication. CPT-induced TopI degradation occurred independent of DNA-PK activation, suggesting that DNA-PK activation does not require degradation of trapped TopI complexes. The combined results suggest that CPT-dependent replication fork collapse activates DNA-PK signaling through a proteasome dependent, TopI degradation-independent pathway. The implications of DNA-PK activation in the context of TopI poison-based therapies are discussed.  相似文献   

3.
Apoptotic DNA fragmentation induced by gamma-rays has been compared with the DNA loop sizes in G0-human lymphocytes using pulsed field gel electrophoresis (PFGE). Genomic DNA was cleaved into the DNA loops at the topoisomerase II mediated attachment points using short treatment of cells with etoposide. The apoptotic fragmentation, with a distinct cut-off around 50 kb for a maximum length of fragments, appeared 5 h after irradiation when the most part of radiation-induced DNA double strand breaks (DSBs) have been repaired. The data indicate that apoptotic fragmentation of DNA in the G0-human lymphocytes begins when repair of radiation-induced DSBs has been completed. Similar apoptotic DNA fragmentation was also observed following the treatment of cells with etoposide. All genomic DNA was fragmented into 50-kb fragments during the final stages of apoptosis. Most of the DNA in resting lymphocytes is organized into Mb-size loops but loops of sizes down to 50 kb were also observed. A sharp border between the size distributions of DNA loops and apoptotic fragments was found. The data suggest that 50 kb apoptotic fragmentation is not based on excision of the DNA loops. No apoptotic fragments with the sizes more than 5.7 Mb were seen during the whole course of apoptosis. This observation indicates that despite intensive apoptotic fragmentation into the 50-kb fragments the chromosomes maintain integrity during radiation-induced apoptosis in human lymphocytes. We propose a model for radiation-induced apoptotic fragmentation in human lymphocytes that involves four stages: induction of DNA breaks and relaxation of DNA loops; DNA repair followed by reorganization of the DNA loops into the 50-kb units of condensed chromatin; co-operative fragmentation of the reorganized DNA loops into the distinct 50-kb fragments and resealing of the chromosome ends at the sites of this fragmentation; cleavage of the 50-kb fragments at the internucleosomal spacers.  相似文献   

4.
Disruption of replication can lead to loss of genome integrity and increase of cancer susceptibility in mammals. Thus, a replication impediment constitutes a formidable challenge to these organisms. Recent studies indicate that homologous recombination (HR) plays an important role in suppressing genome instability and promoting cell survival after exposure to various replication inhibitors, including a topoisomerase I inhibitor, camptothecin (CPT). Here, we report that the deletion of RecQ helicase Recql5 in mouse ES cells and embryonic fibroblast (MEF) cells resulted in a significant increase in CPT sensitivity and a profound reduction in DNA replication after the treatment with CPT, but not other DNA-damaging agents. This CPT-induced cell death is replication dependent and occurs primarily after the cells had exited the first cell cycle after CPT treatment. Furthermore, we show that Recql5 functions nonredundantly with Rad51, a key factor for HR to protect mouse ES cells from CPT-induced cytotoxicity. These new findings strongly suggest that Recql5 plays an important role in maintaining active DNA replication to prevent the collapse of replication forks and the accumulation of DSBs in order to preserve genome integrity and to prevent cell death after replication stress as a result of topoisomerase I poisoning.  相似文献   

5.
The enzyme topoisomerase I (topo I), which is essential for cell replication, transiently causes a DNA single strand break and makes a complex with it. The anti-cancer agent camptothecin (CPT) binds to the topo I–DNA complex and stabilizes it, preventing resealing of the broken DNA strand and cell growth. Considering the structural factors of CPT that are believed to be involved in stabilizing the topo I–DNA complex via hydrogen bonding and stacking interactions, designs of two new analogues of CPT (topo I inhibitors) have been suggested. The molecular geometries of CPT, two of its analogues and certain other related molecules included in the study were fully optimized in both gas phase and aqueous media at the B3LYP/6-311++G(d,p) level of density functional theory. Solvation effects of aqueous media were treated using the polarizable continuum model (PCM). Net CHelpG charges and surface molecular electrostatic potentials (MEP) near the atomic sites of the molecules were studied. Structural analogy and surface MEP values suggests that the two new CPT analogues studied here would be potent topoisomerase I inhibitors. Figure Optimized structures of CPT and two of its new analogues, 10 and 11.  相似文献   

6.
Homocamptothecin (hCPT) contains a seven-membered beta-hydroxylactone in place of the conventional six-membered alpha-hydroxylactone ring found in camptothecin and its tumor active analogues, including topotecan and irinotecan. The homologation of the lactone E-ring reinforces the stability of the lactone, thus reducing considerably its conversion into a carboxylate form which is inactive. We have recently shown that hCPT is much more active than the parent compound against a variety of tumor cells in vitro and in xenograft models, suggesting that a highly reactive lactone is not essential for topoisomerase I-mediated anticancer activity [Lesueur-Ginot et al. (1999) Cancer Res. 59, 2939-2943]. In the present study, we provide further evidence that hCPT has superior topoisomerase I inhibition capacities to CPT. In particular, we show that replacement of the camptothecin lactone E-ring with a homologous seven-membered lactone ring changes the sequence-specificity of the drug-induced DNA cleavage by topoisomerase I. Both CPT and hCPT stimulate the cleavage by topoisomerase I at T( downward arrow)G sites, but in addition, hCPT stabilizes cleavage at specific sites containing the sequence AAC( downward arrow)G. At low drug concentrations, the cleavage at the T( downward arrow)G sites and at the hCPT-specific C( downward arrow)G sites is more pronounced and more stable with hCPT than with CPT. The in vitro data were confirmed in cells. Higher levels of protein-DNA complexes were detected in P388 leukemia cells treated with hCPT than those treated with CPT. Immunoblotting experiments revealed that endogenous topoisomerase I was efficiently trapped onto DNA by hCPT in cells. Finally, the use of a leukemia cell line resistant to CPT provided evidence that topoisomerase I is involved in the cytotoxicity of hCPT. Altogether, the results show that the beta-hydroxylactone ring of hCPT plays an important and positive role in the poisoning of topoisomerase I. An explanation is proposed to account for such remarkable changes in the sequence specificity of topoisomerase I cleavage consequent to the modification of the lactone. The study sheds new light on the importance of the lactone ring of camptothecins for the stabilization of topoisomerase I-DNA complexes.  相似文献   

7.
8.
The processes involved in cell response to camptothecin (CPT) were investigated in two sublines of L5178Y (LY) murine lymphoma; LY-R, resistant and LY-S, sensitive to X-irradiation, which are inversely cross-sensitive to the drug. The cells were pulse-treated with 2 μM CPT for 1 h; this resulted in equal numbers of replication-related DNA double-strand breaks (DSBs) in both sublines.1 After drug removal, at different time points up to 24 h, the levels of DSBs were measured by using field inversion gel electrophoresis (FIGE) and comet assay at neutral pH. Both methods revealed faster DSBs repair in LY-S than in LY-R cells, in contrast with X-ray-induced DSBs. This however, was followed by the appearance of secondary breaks in the former subline. The cell cycle arrest was at S/G2 phase and comprised equal numbers of cells in LY-S and LY-R populations. In both sublines formation of giant cells took place, as well as delayed apoptosis starting about 20 h post-CPT incubation and proceeding with similar intensity. At the same time, the total number of necrotic cells appearing during post-exposure incubation in the LY-R subline exceeded that in the LY-S subline. We suggest that, beside previously documented higher susceptibility of topoisomerase I (Topo I) from LY-R cells to CPT,2,3 a higher initial rate of replication-related DSBs repair, but not lower propensity to apoptosis, may contribute to the relative CPT resistance of LY-S versus LY-R cells. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Our main aim was to establish the efficiency of the single cell electrophoresis technique for differentiating between drugs that bind DNA and those that do not. The alkaline comet assay was used to test the responses of human leukocytes (quiescent cells) to damage induced by reportedly genotoxic and reportedly cytotoxic agents. Incubation of G0 leukocytes for 1 h with the genotoxic agents camptothecin and actinomycin C provoked DNA migration, observed as comet figures. On the other hand, when cells were treated with the cytotoxic agents cordycepin, fluorodeoxyuridine and puromycin, the leukocyte nuclei were indistinguishable from those of untreated cells. In addition, we have developed a rapid method using non-proliferating cells that requires neither culture nor lymphocyte isolation. This method promises to be useful as a rapid in vitro screening assay.  相似文献   

10.
11.
Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.  相似文献   

12.
Monochloramine (NH(2)Cl) is a physiological oxidant produced by activated neutrophils, and it affects apoptosis signaling. We studied the effects of NH(2)Cl on the cell death induced by etoposide, a widely used anticancer agent that is directed to DNA topoisomerase II. Jurkat T cells, a human acute T cell leukemia cell line, were pretreated with 70 microM of NH(2)Cl for 10 min. After 24 h, 5-30 microM of etoposide was added to the NH(2)Cl pretreated and control cells, and their apoptosis, caspase activity, cell morphology, and cellular DNA contents were measured. NH(2)Cl pretreatment significantly inhibited apoptosis and caspase activation induced by etoposide or camptothecin, a DNA topoisomerase I poison, but not by staurosporine or Fas stimulation. The apoptosis inhibition actually resulted in the proliferation of the survived cells and, notably, the survived cells showed more aberrant morphology, such as variation in nuclear size, nuclear fragments, and multinucleated cells. DNA content analysis of the survived cells showed an increase in aneuploid nuclei. Cell cycle analysis after 24 h of NH(2)Cl treatment showed a significant decrease in S phase cells with a concurrent increase in G(0)/G(1) phase cells, which suggested that NH(2)Cl induced G(1) arrest. Using synchronized Jurkat cells, etoposide and camptothecin were found to be particularly cytotoxic to S phase cells, whereas staurosporine and Fas stimulation were not. Thus NH(2)Cl-induced G(1) arrest was a likely cause of the observed resistance to etoposide. These observations suggested that inflammation-derived oxidants may make the tumor cells more resistant to etoposide and increase the risk of tumor progression and the development of secondary tumors by increasing the survival of DNA damage-bearing cells.  相似文献   

13.
DNA topoisomerase I was required for bidirectional DNA replication in an in vitro system for Simian virus 40 (SV40) DNA replication with purified proteins in which the replication fork moved at the rate of 260 nucleotides/min on average. DNA topoisomerase I purified from camptothecin-resistant human lymphoblastoid cells, which confers high resistance of cellular DNA replication to camptothecin [Andoh, T., Ishii, K., Suzuki, Y., Ikegami, Y., Kusunoki, Y., Takemoto, Y. & Okada, K. (1987) Proc. Natl Acad. Sci. USA 84, 5565-5569], was characterized using this system. The activity of stimulating bidirectional DNA replication was comparable between two topoisomerase I from parental and resistant cells, i.e. in its dose-response relationship and in its time course for DNA synthesis. Camptothecin severely inhibited the leading as well as the lagging strand synthesis in the reaction containing the wild type topoisomerase I but not the mutant type topoisomerase I. The mutant type topoisomerase I was over 125-fold as resistant to camptothecin as the wild type topoisomerase I. These results are in good agreement with those on the sensitivity of cellular DNA synthesis to camptothecin in the resistant cells. These findings suggest that topoisomerase I is involved in cellular DNA replication as a swivelase and the mutation conferring camptothecin-resistance on the enzyme does not affect its functional efficiency in this system.  相似文献   

14.
15.
The L5178Y (LY) murine lymphoma subline, LY-R, is more radioresistant and more sensitive to camptothecin (CPT, inhibitor of topisomerase I) than the second subline used in our investigation, LY-S. Post-irradiation treatment with 3 μM CPT enhanced the radiosensitivity of LY-S cells (D0 decrease from 0.52 to 0.34 Gy), but did not change it in LY-R cells. Treatment with 2 mM benzamide [BZ, inhibitor of poly(ADP-ribosylation)] before x-rays and CPT increased the radiosensitivity of LY-R cells (D0 decrease from 1.15 to 0.52) without further modification of radiosensitivity of LY-S cells. Activity of topoisomerase I was diminished 10 min after x-irradiation (5 Gy) in LY-S, but not in LY-R cells. The data on DNA damage (fluorescent halo or comet assays) showed that the ultimate fate of the cells did not depend on the DNA damage pattern estimated immediately after treatment (e. g. the damage was greater in x-rays plus CPT than in BZ plus x-rays plus CPT treated LY-R cells, although the radiosensitivity was less). Aphidicolin (inhibitor of DNA polymerases α and δ) applied concomitantly with CPT in cells not pre-treated with BZ prevented the increase in DNA damage in LY-R cells, but was without effect in LY-S cells. Taking into account the differential inhibition by x-rays of DNA synthesis in LY sublines and its reversion by BZ in LY-S but not in LY-R cells, we conclude that the pattern of DNA damage observed by the methods applied depended on the status of DNA replication. Received: 28 November 1995 / Accepted in revised form: 20 April 1996  相似文献   

16.
The Werner syndrome helicase/3′-exonuclease (WRN) is a major component of the DNA repair and replication machinery. To analyze whether WRN is involved in the repair of topoisomerase-induced DNA damage we utilized U2-OS cells, in which WRN is stably down-regulated (wrn-kd), and the corresponding wild-type cells (wrn-wt). We show that cells not expressing WRN are hypersensitive to the toxic effect of the topoisomerase I inhibitor topotecan, but not to the topoisomerase II inhibitor etoposide. This was shown by mass survival assays, colony formation and induction of apoptosis. Upon topotecan treatment WRN deficient cells showed enhanced DNA replication inhibition and S-phase arrest, whereas after treatment with etoposide they showed the same cell cycle response as the wild-type. A considerable difference between WRN and wild-type cells was observed for DNA single- and double-strand break formation in response to topotecan. Topotecan induced DNA single-strand breaks 6 h after treatment. In both wrn-wt and wrn-kd cells these breaks were repaired at similar kinetics. However, in wrn-kd but not wrn-wt cells they were converted into DNA double-strand breaks (DSBs) at high frequency, as shown by neutral comet assay and phosphorylation of H2AX. Our data provide evidence that WRN is involved in the repair of topoisomerase I, but not topoisomerase II-induced DNA damage, most likely via preventing the conversion of DNA single-strand breaks into DSBs during the resolution of stalled replication forks at topo I–DNA complexes. We suggest that the WRN status of tumor cells impacts anticancer therapy with topoisomerase I, but not topoisomerase II inhibitors.  相似文献   

17.
Cells from Fanconi anemia (FA) patients have defective DNA repair and are hypersensitive to DNA crosslinking agents such as mitomycin C (MMC). We examined the possibility that topoisomerase I is involved in the DNA crosslink repair system and is deficient in FA group A cells. FA cells and control cells were exposed to MMC with or without camptothecin (CPT), a topoisomerase I inhibitor. The cells did not show any increased sensitivity to killing by MMC with CPT, suggesting that the topoisomerase I is not involved in MMC-damaged DNA repair. However, FA cells showed increased sensitivity to CPT in comparison to control cells, raising the possibility of altered topoisomerase I in FA cells. Therefore, a mutation analysis was performed on topoisomerase I cDNA from FA cells by using chemical cleavage mismatch scanning and nucleotide sequencing. No mutation was detected from GM1309, a group A FA cell line. A base transition (C to T) at position 241, causing an amino acid change (His to Tyr), was found in GM2061, a FA cell line of unknown complementation group. However, allele-specific oligonucleotide hybridization analysis showed that this is a gene polymorphism. We conclude that FA cells have normal gene structure for topoisomerase I.  相似文献   

18.
Taxotere (RP 56976, NSC 628503), an analog of taxol, is an inhibitor of depolymerisation of microtubules and is currently in Phase I clinical trials. Comparisons of the cytotoxicities of Taxotere and taxol have been studied on several murine (P388, SVras) and human cell lines (Calc18, HCT116, T24, N417, KB). Taxotere was found more potent than taxol (1.3-12 fold), a result which could be explained by its higher affinity than taxol for microtubules. In agreement with its postulated mechanism of action, Taxotere is more cytotoxic on proliferating than on non proliferating N417 cells and does not inhibit cellular DNA, RNA and protein synthesis. Taxotere gives partial cross resistance on P-glycoprotein resistant P388/DOX cell line, in contrast to taxol which gives a complete cross resistance. On the other hand, no cross resistances were observed on Calc18/AM and P388/CPT5 cell lines, bearing modified activities of topoisomerase II and topoisomerase I, respectively. These results underline the higher cytotoxic activity of Taxotere compared to taxol, and the lack of cross resistance of that class of agent with the topoisomerase I and II-related multidrug resistance phenotypes.  相似文献   

19.
Camptothecin (CPT) binds reversibly to, and thereby stabilizes, the cleavable complex formed between DNA and topoisomerase I. The nature of the interaction of CPT with the DNA-topoisomerase I binary complex was studied by the use of two affinity labeling reagents structurally related to camptothecin: 10-bromoacetamidomethylcamptothecin (BrCPT) and 7-methyl-10-bromoacetamidomethylcamptothecin (BrCPTMe). These compounds have been shown to trap the DNA-topoisomerase I complex irreversibly. Although cleavage of DNA plasmid mediated by topoisomerase I and camptothecin was reduced significantly by treatment with high salt or excess competitor DNA, enzyme-mediated DNA cleavage stabilized by BrCTPMe persisted for at least 4 h after similar treatment. The production of irreversible topoisomerase I-DNA cleavage was time-dependent, suggesting that BrCPTMe first bound noncovalently to the enzyme-DNA complex and, in a second slower step, alkylated the enzyme or DNA in a manner that prevented DNA ligation. The formation of a covalent linkage was supported by experiments that employed [3H]BrCPT, which was shown to label topoisomerase I within the enzyme-DNA complex. [3H]BrCPT labeling of topoisomerase I was enhanced greatly by the presence of DNA; very little labeling of isolated topoisomerase I or isolated DNA occurred. Even in the presence of DNA, [3H]BrCPT labeling of topoisomerase I was inhibited by camptothecin, suggesting that both CPT and BrCPT bound to the same site on the DNA-topoisomerase I binary complex. These studies provide further evidence that a binding site for camptothecin is created as the DNA-topoisomerase I complex is formed and suggest that the A-ring of camptothecin is proximate to an enzyme residue.  相似文献   

20.
M Charron  R Hancock 《Biochemistry》1990,29(41):9531-9537
To study the biochemical processes which DNA topoisomerase II carries out in mammalian cells, which have not been identified, we have examined the effects on chromosome replication in Chinese hamster ovary cells of an agent which traps molecules of topoisomerase II when they are covalently integrated into DNA during their reaction. This agent, 4'-demethylepipodophyllotoxin 9-(4,6-O-thenylidene-beta-D-glucopyranoside) (VM-26), targets this enzyme specifically according to a compelling body of evidence. Using synchronously growing cells, we found that VM-26 at a cytotoxic concentration (0.08 microM) did not affect DNA replication during the S phase. The formation of mitotic chromosomes was delayed by 4 h, and its rate was reduced thereafter, causing a delay in mitosis of greater than 14 h in 65% of the cells; in some cells, the chromatin was aberrantly condensed, forming diffuse chromosomes or particles. Chromosome formation was completely inhibited at 0.32 microM VM-26. DNA fragments derived from topoisomerase II molecules covalently integrated in DNA and trapped by VM-26 were detected by FIGE analysis in the G2 period, but not during the S phase. The delay of chromosome formation appeared to be caused by two factors: first, a delay in the completion of DNA replication, because progress of some cells to mitosis after removal of VM-26 was prevented by aphidicolin, an inhibitor of DNA polymerases alpha and delta; and second, a delay of chromosome formation in cells which had apparently completed DNA replication. The observations reported here show that topoisomerase II carries out reactions which are essential for formation of mitotic chromosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号