首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1‐40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER‐ff99sb‐ILDN, AMBER‐ff99sb*‐ILDN, AMBER‐ff99sb‐NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER‐ff99sb‐ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α‐helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER‐ff99sb‐NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER‐ff99sb‐NMR force field, the others tended to under estimate the expected amount of β‐sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER‐ff99sb‐NMR, reproduce a theoretically expected β‐sheet‐turn‐β‐sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C‐terminal hydrophobic cores from residues 17‐21 and 30‐36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different.  相似文献   

2.
The oncogenic proteins MDM2 and MDMX have distinct and critical roles in the control of the activity of the p53 tumor suppressor protein. Recently, we have used spatial coarse graining simulations to analyze the conformational transitions manifest in the p53 recognition of MDM2 and MDMX. These conformational movements are different between MDM2 and MDMX and unveil the presence of conserved and nonconserved interactions in the p53 binding cleft that may be exploited in the design of selective and dual modulators of the oncogenic proteins. In this study, we investigate the conformational profiles of apo‐ and p53‐bound states of MDM2 and MDMX using molecular dynamic simulations along a time scale of 60 ns. The analysis of the trajectories is instrumental to discuss energetical and conformational aspects of p53 recognition and to point out specific key residues whose conformational shifts have crucial roles in affecting the apo‐ and p53‐bound states of MDM2 and MDMX. Among these, in particular, linear discriminant analyses identify diverse conformations of Y99/Y100 (MDMX/MDM2) as markers of the apo‐ and p53‐bound states of the oncogenic proteins. The results of this study shed further light on different p53 recognition in MDM2 and MDMX and may prove useful for the design and identification of new potent and selective synthetic modulators of p53‐MDM2/MDMX interactions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side‐chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha‐helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side‐chain torsion potentials of these residues to match new, high‐level quantum‐mechanical calculations. Finally, we used microsecond‐timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side‐chain conformations. The new force field, which we have termed Amber ff99SB‐ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20?ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.  相似文献   

5.
Predicting biological structure has remained challenging for systems such as disordered proteins that take on myriad conformations. Hybrid simulation/experiment strategies have been undermined by difficulties in evaluating errors from computational model inaccuracies and data uncertainties. Building on recent proposals from maximum entropy theory and nonequilibrium thermodynamics, we address these issues through a Bayesian energy landscape tilting (BELT) scheme for computing Bayesian hyperensembles over conformational ensembles. BELT uses Markov chain Monte Carlo to directly sample maximum-entropy conformational ensembles consistent with a set of input experimental observables. To test this framework, we apply BELT to model trialanine, starting from disagreeing simulations with the force fields ff96, ff99, ff99sbnmr-ildn, CHARMM27, and OPLS-AA. BELT incorporation of limited chemical shift and 3J measurements gives convergent values of the peptide’s α, β, and PPII conformational populations in all cases. As a test of predictive power, all five BELT hyperensembles recover set-aside measurements not used in the fitting and report accurate errors, even when starting from highly inaccurate simulations. BELT’s principled framework thus enables practical predictions for complex biomolecular systems from discordant simulations and sparse data.  相似文献   

6.
Predicting biological structure has remained challenging for systems such as disordered proteins that take on myriad conformations. Hybrid simulation/experiment strategies have been undermined by difficulties in evaluating errors from computational model inaccuracies and data uncertainties. Building on recent proposals from maximum entropy theory and nonequilibrium thermodynamics, we address these issues through a Bayesian energy landscape tilting (BELT) scheme for computing Bayesian hyperensembles over conformational ensembles. BELT uses Markov chain Monte Carlo to directly sample maximum-entropy conformational ensembles consistent with a set of input experimental observables. To test this framework, we apply BELT to model trialanine, starting from disagreeing simulations with the force fields ff96, ff99, ff99sbnmr-ildn, CHARMM27, and OPLS-AA. BELT incorporation of limited chemical shift and 3J measurements gives convergent values of the peptide’s α, β, and PPII conformational populations in all cases. As a test of predictive power, all five BELT hyperensembles recover set-aside measurements not used in the fitting and report accurate errors, even when starting from highly inaccurate simulations. BELT’s principled framework thus enables practical predictions for complex biomolecular systems from discordant simulations and sparse data.  相似文献   

7.
We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) . d(A5G5) (Feig, M. and B.M. Pettitt, 1997, Experiment vs. Force Fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. (101:7361-7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.  相似文献   

8.
Intrinsically disordered proteins are essential for biological processes such as cell signalling, but are also associated to devastating diseases including Alzheimer's disease, Parkinson's disease or type II diabetes. Because of their lack of a stable three‐dimensional structure, molecular dynamics simulations are often used to obtain atomistic details that cannot be observed experimentally. The applicability of molecular dynamics simulations depends on the accuracy of the force field chosen to represent the underlying free energy surface of the system. Here, we use replica exchange molecular dynamics simulations to test five modern force fields, OPLS, AMBER99SB, AMBER99SB*ILDN, AMBER99SBILDN‐NMR and CHARMM22*, in their ability to model Aβ42, an intrinsically disordered peptide associated with Alzheimer's disease, and compare our results to nuclear magnetic resonance (NMR) experimental data. We observe that all force fields except AMBER99SBILDN‐NMR successfully reproduce local NMR observables, with CHARMM22* being slightly better than the other force fields.  相似文献   

9.
The soluble acetylcholine binding protein (AChBP) is the default structural proxy for pentameric ligand‐gated ion channels (LGICs). Unfortunately, it is difficult to recognize conformational signatures of LGIC agonism and antagonism within the large set of AChBP crystal structures in both apo and ligand‐bound states, primarily because AChBP conformations in this set are nearly superimposable (root mean square deviation < 1.5 Å). We have undertaken a systematic, alignment‐free approach to elucidate conformational differences displayed by AChBP that cleanly differentiate apo/antagonist‐bound from agonist‐bound states. Our approach uses statistical inference based on both crystallographic states and conformations sampled during long molecular dynamics simulations to select important inter‐Cα distances and map their collective values onto functional states. We observe that binding of (nAChR) agonists to AChBP elicits clockwise rotation of the inner β‐sheet with respect to the outer β‐sheet, causing tilting of the cys‐loop away from the five‐fold axis, in a manner quite similar to that speculated for α‐subunits of the heteromeric nAChR structure (Unwin, J Mol Biol 2005;346:967), making this motion potentially important in transmission of the gating signal to the transmembrane domain of a LGIC. The method is also successful at discriminating partial from full agonists and supports the hypothesis that a particularly controversial ligand, lobeline, is in fact an LGIC antagonist.  相似文献   

10.
Critical to the inhibitory action of the oncogene product, MDM2, on the tumour suppressor, p53, is association of the N-terminal domain of MDM2 (MDM2N) with the transactivation domain of p53. The structure of MDM2N was previously solved with a p53-derived peptide, or small-molecule ligands, occupying its binding cleft, but no structure of the non-liganded MDM2N (i.e. the apo-form) has been reported. Here, we describe the solution structure and dynamics of apo-MDM2N and thus reveal the nature of the conformational changes in MDM2N that accompany binding of p53. The new structure suggests that p53 effects displacement of an N-terminal segment of apo-MDM2N that occludes access to the shallow end of the p53-binding cleft. MDM2N must also undergo an expansion upon binding, achieved through a rearrangement of its two pseudosymetrically related sub-domains resulting in outward displacements of the secondary structural elements that comprise the walls and floor of the p53-binding cleft. MDM2N becomes more rigid and stable upon binding p53. Conformational plasticity of the binding cleft of apo-MDM2N could allow the parent protein to bind specifically to several different partners, although, to date, all the known liganded structures of MDM2N are highly similar to one another. The results indicate that the more open conformation of the binding cleft of MDM2N observed in structures of complexes with small molecules and peptides is a more suitable one for ligand discovery and optimisation.  相似文献   

11.
The hallmark of Parkinson’s disease (PD) is the intracellular protein aggregation forming Lewy Bodies (LB) and Lewy neuritis which comprise mostly of a protein, alpha synuclein (α-syn). Molecular dynamics (MD) simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution. The quality of MD simulations for proteins and peptides depends greatly on the accuracy of empirical force fields. The aim of this work is to investigate the effects of different force fields on the structural character of β hairpin fragment of α-syn (residues 35–56) peptide in aqueous solution. Six independent MD simulations are done in explicit solvent using, AMBER03, AMBER99SB, GROMOS96 43A1, GROMOS96 53A6, OPLS-AA, and CHARMM27 force fields with CMAP corrections. The performance of each force field is assessed from several structural parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), formation of β-turn, the stability of folded β-hairpin structure, and the favourable conformations obtained for different force fields. In this study, CMAP correction of CHARMM27 force field is found to overestimate the helical conformation, while GROMOS96 53A6 is found to most successfully capture the conformational dynamics of α-syn β-hairpin fragment as elicited from NMR.  相似文献   

12.
13.
Guvench O  Price DJ  Brooks CL 《Proteins》2005,58(2):407-417
The trypsin-like serine proteases comprise a structurally similar family of proteins with a wide diversity of biological functions. Members of this family play roles in digestion, hemostasis, immune responses, and cancer metastasis. Bovine trypsin is an archetypical member of this family that has been extensively characterized both functionally and structurally, and that preferentially hydrolyzes Arg/Lys-Xaa peptide bonds. We have used molecular dynamics (MD) simulations to study bovine trypsin complexed with the two noncovalent small-molecule ligands, benzamidine and tranylcypromine, that have the same hydrogen-bond donating moieties as Arg and Lys side-chains, respectively. Multiple (10) simulations ranging from 1 ns to 2.2 ns, with explicit water molecules and periodic boundary conditions, were performed. The simulations reveal that the trypsin binding pocket residues are relatively rigid regardless of whether there is no ligand, a high-affinity ligand (benzamidine), or a low-affinity ligand (tranylcypromine). The thermal average of the conformations sampled by benzamidine bound to trypsin is planar and consistent with the planar internal geometry of the benzamidine crystallographic model coordinates. However, the most probable bound benzamidine conformations are +/-25 degrees out of plane, implying that the observed X-ray electron density represents an average of densities from two mirror symmetric, nonplanar conformations. Solvated benzamidine has free energy minima at +/-45 degrees , and the induction of a more planar geometry upon binding is associated with approximately 1 kcal/mol of intramolecular strain. Tranylcypromine's hydrogen-bonding pattern in the MD differs substantially from that inferred from the X-ray electron density. Early in simulations of this system, tranylcypromine adopts an alternative binding conformation, changing from the crystallographic conformation, with a direct hydrogen bond between its amino moiety and the backbone oxygen of Gly219, to one having a bridging water molecule. This result is consistently seen with the CHARMM22, Amber, or OPLS-AA force fields. The trypsin-tranylcypromine hydrogen-bonding pattern observed in the simulations also occurs as the crystallographic binding mode of the Lys15 side-chain of bovine pancreatic trypsin inhibitor bound to trypsin. In this latter cocrystal, a bridging crystallographic water does reside between the side-chain's amino group and the trypsin Gly219 backbone oxygen. Furthermore, the trypsin-tranylcypromine simulations sample two different stable noncrystallographic binding poses. These data suggest that some of the electron density ascribed to tranylcypromine in the X-ray model is rather due to a bound water molecule, and that multiple tranylcypromine binding conformations (crystallographic disorder) may be the cause of ambiguous electron density. The combined trypsin-benzamidine and trypsin- tranylcypromine results highlight the ability of simulations to augment protein-ligand complex structural data by deconvoluting the effects of thermal and structural averaging, and by finding energetically optimal ligand and bound water positions for weakly bound ligands.  相似文献   

14.
Urea is a commonly used protein denaturant, and it is of great interest to determine its interaction with various protein groups to elucidate the molecular basis of its effect on protein stability. Using the Trp-cage miniprotein as a model system, we report what we believe to be the first computation of changes in the preferential interaction coefficient of the protein upon urea denaturation from molecular-dynamics simulations and examine the contributions from the backbone and the side-chain groups. The preferential interaction is obtained from reversible folding/unfolding replica exchange molecular-dynamics simulations of Trp-cage in presence of urea, over a wide range of urea concentration. The increase in preferential interaction upon unfolding is dominated by the side-chain contribution, rather than the backbone. Similar trends are observed in simulations using two different force fields, Amber94 and Amber99sb, for the protein. The magnitudes of the side-chain and backbone contributions differ in the two force fields, despite containing identical protein-solvent interaction terms. The differences arise from the unfolded ensembles sampled, with Amber99sb favoring conformations with larger surface area and lower helical content. These results emphasize the importance of the side-chain interactions with urea in protein denaturation, and highlight the dependence of the computed driving forces on the unfolded ensemble sampled.  相似文献   

15.
Molecular mechanism of the interaction between MDM2 and p53   总被引:7,自引:0,他引:7  
We have investigated the kinetic and thermodynamic basis of the p53-MDM2 interaction using a set of peptides based on residues 15-29 of p53. Wild-type p53 peptide bound MDM2 with a dissociation constant of 580nM. Phosphorylation of S15 and S20 did not affect binding, but T18 phosphorylation weakened binding tenfold, indicating that phosphorylation of only T18 is responsible for abrogating p53-MDM2 binding. Truncation to residues 17-26 increased affinity 13-fold, but further truncation to 19-26 abolished binding. NMR studies of the binding of the p53-derived peptides revealed global conformational changes of the overall structure of MDM2, stretching far beyond the binding cleft, indicating significant changes in the domain dynamics of MDM2 upon ligand binding.  相似文献   

16.
The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.  相似文献   

17.
The control of p53 ubiquitination by MDM2 provides a model system to define how an E3-ligase functions on a conformationally flexible substrate. The mechanism of MDM2-mediated ubiquitination of p53 has been analyzed by deconstructing, in vitro, the MDM2-dependent ubiquitination reaction. Surprisingly, ligands binding to the hydrophobic cleft of MDM2 do not inhibit its E3-ligase function. However, peptides from within the DNA binding domain of p53 that bind the acid domain of MDM2 inhibit ubiquitination of p53, localizing a motif that harbors a key ubiquitination signal. The binding of ligands to the N-terminal hydrophobic cleft of MDM2 reactivates, in vitro and in vivo, MDM2-catalyzed ubiquitination of p53F19A, a mutant p53 normally refractory to MDM2-catalyzed ubiquitination. We propose a model in which the interaction between the p53-BOX-I domain and the N terminus of MDM2 promotes conformational changes in MDM2 that stabilize acid-domain interactions with a ubiquitination signal in the DNA binding domain of the p53 tetramer.  相似文献   

18.
Sinorhizobium meliloti DctB is a typical transmembrane sensory histidine kinase, which senses C4‐dicarboxylic acids (DCA) and regulates the expression of DctA, the DCA transporter. We previously reported the crystal structures of its periplasmic sensory domain (DctBp) in apo and succinate‐bound states, and these structures showed dramatic conformational changes at dimeric level. Here we show a ligand‐induced dimeric switch in solution and a strong correlation between DctBp's dimerization states and the in vivo activities of DctB. Using site‐directed mutagenesis, we identify important determinants for signal perception and transduction. Specifically, we show that the ligand‐binding pocket is essential for DCA‐induced ‘on’ activity of DctB. Mutations at different sections of DctBp's dimerization interface can lock full‐length DctB at either ‘on’ or ‘off’ state, independent of ligand binding. Taken together, these results suggest that DctBp's signal perception and transduction occur through a ‘ligand‐induced dimeric switch’, in which the changes in the dimeric conformations upon ligand binding are responsible for the signal transduction in DctB.  相似文献   

19.
GM Verkhivker 《PloS one》2012,7(7):e40897
Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation would require further integration of computational and experimental studies and may help to guide drug design of novel anti-cancer therapeutics.  相似文献   

20.
The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium‐bound and calcium‐free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can “clamp” the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure‐based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号