首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Rackovsky 《Proteins》2013,81(10):1681-1685
Delineation of the relationship between sequence and structure in proteins has proven elusive. Most studies of this problem use alignment methods and other approaches based on the characteristics of individual residues. It is demonstrated herein that the sequence‐structure relationship is determined in significant part by global characteristics of sequence organization. Information encoded in complete sequences is required to distinguish proteins in different architectural groups. It is found that the statistically significant differences between sequences encoding different architectures are encoded in a surprisingly small set of low‐wave‐number sequence periodicities. It would therefore appear that unexpected simplicity in an appropriately defined Fourier space may be an inherent characteristic of the sequences of folded proteins. Proteins 2013; 81:1681–1685. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Following the original idea of Maynard Smith on evolution of the protein sequence space, a novel tool is developed that allows the "space walk", from one sequence to its likely evolutionary relative and further on. At a given threshold of identity between consecutive steps, the walks of many steps are possible. The sequences at the ends of the walks may substantially differ from one another. In a sequence space of randomized (shuffled) sequences the walks are very short. The approach opens new perspectives for protein evolutionary studies and sequence annotation.  相似文献   

3.
A new method to detect remote relationships between protein sequences and known three-dimensional structures based on direct energy calculations and without reliance on statistics has been developed. The likelihood of a residue to occupy a given position on the structural template was represented by an estimate of the stabilization free energy made after explicit prediction of the substituted side chain conformation. The profile matrix derived from these energy values and modified by increasing the residue self-exchange values successfully predicted compatibility of heatshock protein and globin sequences with the three-dimensional structures of actin and phycocyanin, respectively, from a full protein sequence databank search. The high sensitivity of the method makes it a unique tool for predicting the three-dimensional fold for the rapidly growing number of protein sequences. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Protein C alpha coordinates are used to accurately reconstruct complete protein backbones and side-chain directions. This work employs potentials of mean force to align semirigid peptide groups around the axes that connect successive C alpha atoms. The algorithm works well for all residue types and secondary structure classes and is stable for imprecise C alpha coordinates. Tests on known protein structures show that root mean square errors in predicted main-chain and C beta coordinates are usually less than 0.3 A. These results are significantly more accurate than can be obtained from competing approaches, such as modeling of backbone conformations from structurally homologous fragments.  相似文献   

5.
A novel approach for evaluation of sequence relatedness via a network over the sequence space is presented. This relatedness is quantified by graph theoretical techniques. The graph is perceived as a flow network, and flow algorithms are applied. The number of independent pathways between nodes in the network is shown to reflect structural similarity of corresponding protein fragments. These results provide an appropriate parameter for quantitative estimation of such relatedness, as well as reliability of the prediction. They also demonstrate a new potential for sequence analysis and comparison by means of the flow network in the sequence space.  相似文献   

6.
Frenkel ZM  Trifonov EN 《Proteins》2007,67(2):271-284
A new method is proposed to reveal apparent evolutionary relationships between protein fragments with similar 3D structures by finding "intermediate" sequences in the proteomic database. Instead of looking for homologies and intermediates for a whole protein domain, we build a chain of intermediate short sequences, which allows one to link similar structural modules of proteins belonging to the same or different families. Several such chains of intermediates can be combined into an evolutionary tree of structural protein modules. All calculations were made for protein fragments of 20 aa residues. Three evolutionary trees for different module structures are described. The aim of the paper is to introduce the new method and to demonstrate its potential for protein structural predictions. The approach also opens new perspectives for protein evolution studies.  相似文献   

7.
Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.  相似文献   

8.
A key concept in template‐based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well‐established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure‐function relationship. We show that protein families with low conformational diversity show a well‐correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.  相似文献   

9.
Glycolipids participate in many important cellular processes and they are bound and transferred with high specificity by glycolipid transfer protein (GLTP). We have solved three different X-ray structures of bovine GLTP at 1.4 angstroms, 1.6 angstroms and 1.8 angstroms resolution, all with a bound fatty acid or glycolipid. The 1.4 angstroms structure resembles the recently characterized apo-form of the human GLTP but the other two structures represent an intermediate conformation of the apo-GLTPs and the human lactosylceramide-bound GLTP structure. These novel structures give insight into the mechanism of lipid binding and how GLTP may conformationally adapt to different lipids. Furthermore, based on the structural comparison of the GLTP structures and the three-dimensional models of the related Podospora anserina HET-C2 and Arabidopsis thaliana accelerated cell death protein, ACD11, we give structural explanations for their specific lipid binding properties.  相似文献   

10.
P McCaldon  P Argos 《Proteins》1988,4(2):99-122
We have examined oligopeptides with lengths ranging from 2 to 11 residues in protein sequences that show no obvious evolutionary relationship. All sequences in the Protein Identification Resource database were carefully classified by sensitive homology searches into superfamilies to obtain unbiased oligopeptide counts. The results, contrary to previous studies, show clear prejudices in protein sequences. The oligopeptide preferences were used to help decide the significance of sequence homologies and to improve the more general methods for detecting protein coding regions within nucleotide sequences.  相似文献   

11.
We present results of structural modeling of the variable fragment of Mα2,3, an antibody capable of neutralizing all short snake toxins. Three different methods were used to model the hypervariable loops: the conformational search algorithm CONGEN (Bruccoleri and Karplus, Biopolymers 26:137–168, 1987), high-temperature molecular dynamics (Bruccoleri and Karplus, Biopolymers 29:1847–1862, 1990), and a combined knowledge-based and energy-based algorithm (Martin et al., Proc. Natl. Acad. Sci. USA 86:9268–9272, 1989). Ninety plausible conformations were generated and were clustered into 13 classes. The clustering results indicate that there was little overlap of the conformational space explored by the different methods. Canonical loop structures were found by all methods for two of the loops, in agreement with previously established empirical modeling criteria. Nine of the 13 classes of structure were rejected on the ground of their lacking common features of antibody combining-site structure. The remaining four models were refined using restrained molecular dynamics. It was found that interconversion between the four resulting structures is possible with no significant energy barriers, suggesting that they are in thermodynamic equilibrium at 300 K. Features of the combining-site structure likely to be particularly important for antigen binding are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

12.
S Rackovsky 《Proteins》1990,7(4):378-402
We address herein the problem of delineating the relationships between the known protein structures. In order to study this problem, methods have been developed to represent arbitrarily sized fragments of biopolymer backbone, and to compare distributions of such fragments. These methods are applied to a classification of 123 structures representing the entire set of known x-ray structures. The resulting data are analyzed (on the four-C alpha length scale) to determine both the large-scale organization of the set of known structures (i.e., the relationships between large groups of structures, each comprised of proteins that are structurally related) and its local structure (i.e., the quantitative degree of similarity between any two specific structures). It is shown that the set of structures forms a continuum of structural types, ranging from all-helical to all-sheet/barrel proteins. It is further demonstrated that the density of protein structures is not uniform across this continuum, but rather that structures cluster in certain regions, separated by regions of lower population. The properties of the various regions of the structural space are determined. The existence is demonstrated of strong quantitative correlations between the contents of different types of four-C alpha fragments within protein structures, which imply significant constraints on the types of architecture that can occur in proteins. Analysis of the distribution of structures demonstrates some hitherto unsuspected similarities and suggests that, in some circumstances, neither structural similarity nor sequence homology may be necessary conditions for evolutionary relationship between proteins. It is also suggested that these unsuspected similarities may imply similar folding mechanisms for structures of apparently different global architecture. Cases are also noted in which apparently similar structures may fold by different mechanisms. The connection between structure and dynamic properties is discussed, and a possible role of dynamics in the evolution of protein structures is suggested. The sensitivity of the methods presented herein to anomalies of structure refinement is demonstrated. It is suggested that the present results provide a framework for analyzing experimental results on structural similarity obtained using vibrational circular dichroism spectra, which are sensitive to local backbone structure.  相似文献   

13.
Lee J  Lee J  Sasaki TN  Sasai M  Seok C  Lee J 《Proteins》2011,79(8):2403-2417
Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods.  相似文献   

14.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   

15.
Mark E. Snow 《Proteins》1993,15(2):183-190
A novel scheme for the parameterization of a type of “potential energy” function for protein molecules is introduced. The function is parameterized based on the known conformations of previously determined protein structures and their sequence similarity to a molecule whose conformation is to be calculated. Once parameterized, minima of the potential energy function can be located using a version of simulated annealing which has been previously shown to locate global and near-global minima with the given functional form. As a test problem, the potential was parameterized based on the known structures of the rubredoxins from Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Clostridium pasteurianum, which vary from 45 to 54 amino acids in length, and the sequence alignments of these molecules with the rubredoxin sequence from Desulfovibrio gigas. Since the Desulfovibrio gigas rubredeoxin conformation has also been determined, it is possible to check the accuracy of the results. Ten simulated-annealing runs from random starting conformations were performed. Seven of the 10 resultant conformations have an all-Cα rms deviation from the crystallographically determined conformation of less than 1.7 Å. For five of the structures, the rms deviation is less than 0.8 Å. Four of the structures have conformations which are virtually identical to each other except for the position of the carboxy-terminal residue. This is also the conformation which is achieved if the determined crystal structure is minimized with the same potential. The all-Cα rms difference between the crystal and minimized crystal structures is 0.6 Å. It is further observed that the “energies” of the structures according to the potential function exhibit a strong correlation with rms deviation from the native structure. The conformations of the individual model structures and the computational aspects of the modeling procedure are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

16.
17.
Kuznetsov IB 《Proteins》2008,72(1):74-87
Ordered conformational changes are an important structural property of proteins and are involved in a variety of fundamental biological activities. Large-scale analyses of the implications of such changes for protein function and dysfunction require efficient methods for automated recognition of conformationally variable residue positions. The goal of this work was to study sequence and low-resolution structural properties of residue positions that change backbone conformation upon changes in protein environment and the utility of these properties for automated recognition of such conformationally variable positions. This study was performed using a large nonredundant set of experimentally characterized proteins that undergo ordered conformational transitions obtained from the Database of Macromolecular Movements. The results of this study show that ordered changes in backbone conformation are not limited to solvent accessible loop regions. A considerable fraction of conformationally variable positions is observed in helices and strands, and in buried positions. Conformationally variable positions are less conserved in evolution. Local patterns of (a) sequence neighbors, (b) evolutionary conservation, and (c) solvent accessibility can be used to predict conformationally variable positions with balanced sensitivity and specificity, albeit with large variance at the level of individual proteins. However, including a pattern of secondary structure into the prediction scheme results in a highly unbalanced performance when all conformationally variable positions located in regular secondary structure are misclassified. Application of the present methodology to the prion protein (PrP) shows that conformationally variable positions predicted in its ordered C-terminal domain are located within segments presumed to be involved in refolding of PrP.  相似文献   

18.
The crystal structure of glycerol-3-phosphate cytidylyltransferase from B. subtilis (TagD) is about to be solved. Here, we report a testable structure prediction based on the identification by sequence analysis of a superfamily of functionally diverse but structurally similar nucleotide-binding enzymes. We predict that TagD is a member of this family. The most conserved region in this superfamily resembles the ATP-binding HiGH motif of class I aminoacyI-tRNA synthetases. The predicted secondary structure of cytidylyltransferase and its homologues is compatible with the α/β topography of the class I aminoacyl-tRNA synthetases. The hypothesis of similarity of fold is strengthened by sequence-structure alignment and 3D model building using the known structure of tyrosyl tRNA synthetase as template. The proposed 3D model of TagD is plausible both structurally, with a well packed hydrophobic core, and functionally, as the most conserved residues cluster around the putative nucleotide binding site. If correct, the model would imply a very ancient evolutionary link between class I tRNA synthetases and the novel cytidylyltransferase superfamily. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.  相似文献   

20.
A novel method has been developed for acquiring the correct alignment of a query sequence against remotely homologous proteins by extracting structural information from profiles of multiple structure alignment. A systematic search algorithm combined with a group of score functions based on sequence information and structural information has been introduced in this procedure. A limited number of top solutions (15,000) with high scores were selected as candidates for further examination. On a test-set comprising 301 proteins from 75 protein families with sequence identity less than 30%, the proportion of proteins with completely correct alignment as first candidate was improved to 39.8% by our method, whereas the typical performance of existing sequence-based alignment methods was only between 16.1% and 22.7%. Furthermore, multiple candidates for possible alignment were provided in our approach, which dramatically increased the possibility of finding correct alignment, such that completely correct alignments were found amongst the top-ranked 1000 candidates in 88.3% of the proteins. With the assistance of a sequence database, completely correct alignment solutions were achieved amongst the top 1000 candidates in 94.3% of the proteins. From such a limited number of candidates, it would become possible to identify more correct alignment using a more time-consuming but more powerful method with more detailed structural information, such as side-chain packing and energy minimization, etc. The results indicate that the novel alignment strategy could be helpful for extending the application of highly reliable methods for fold identification and homology modeling to a huge number of homologous proteins of low sequence similarity. Details of the methods, together with the results and implications for future development are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号