首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A variety of extreme environments, characterized by extreme values of various physicochemical parameters (temperature, pressure, salinity, pH, and so on), are found on Earth. Organisms that favorably live in such extreme environments are called extremophiles. All living organisms, including extremophiles, must acquire energy to maintain cellular homeostasis, including extremophiles. For energy conversion in harsh environments, thermodynamically useful reactions and stable biomolecules are essential. In this review, I briefly summarize recent studies of extreme environments and extremophiles living in these environments and describe energy conversion processes in various extremophiles based on my previous research. Furthermore, I discuss the correlation between the biological system of electrotrophy, a third biological energy acquisition system, and the mechanism underlying microbiologically influenced corrosion. These insights into energy conversion in extremophiles may improve our understanding of the “limits of life”.

Abbreviations: PPi: pyrophosphate; PPase: pyrophosphatase; ITC: isothermal titration microcalorimetry; SVNTase: Shewanella violacea 5?-nucleotidase; SANTase: Shewanella amazonensis 5?-nucleotidase  相似文献   


2.
ABSTRACT: BACKGROUND: A large number of genome-scale metabolic networks is now available for many organisms, mostly bacteria. Previous works on minimal gene sets, when analysing host-dependent bacteria, found small common sets of metabolic genes. When such analyses are restricted to bacteria with similar lifestyles, larger portions of metabolism are expected to be shared and their composition is worth investigating. Here we report a comparative analysis of the small molecule metabolism of symbiotic bacteria, exploring common and variable portions as well as the contribution of different lifestyle groups to the reduction of a common set of metabolic capabilities. RESULTS: We found no reaction shared by all the bacteria analysed. Disregarding those with the smallest genomes, we still do not find a reaction core, however we did find a core of biochemical capabilities. While obligate intracellular symbionts have no core of reactions within their group, extracellular and cell-associated symbionts do have a small core composed of disconnected fragments. In agreement with previous findings in Escherichia coli, their cores are enriched in biosynthetic processes whereas the variable metabolisms have similar ratios of biosynthetic and degradation reactions. Conversely, the variable metabolism of obligate intracellular symbionts is enriched in anabolism. CONCLUSION: Even when removing the symbionts with the most reduced genomes, there is no core of reactions common to the analysed symbiotic bacteria. The main reason is the very high specialisation of obligate intracellular symbionts, however, host-dependence alone is not an explanation for such absence. The composition of the metabolism of cell-associated and extracellular bacteria shows that while they have similar needs in terms of the building blocks of their cells, they have to adapt to very distinct environments. On the other hand, in obligate intracellular bacteria, catabolism has largely disappeared, whereas synthetic routes appear to have been selected for depending on the nature of the symbiosis. As more genomes are added, we expect, based on our simulations, that the core of cell-associated and extracellular bacteria continues to diminish, converging to approximately 60 reactions.  相似文献   

3.
Billions of years of evolution have yielded today's complex metabolic networks driven by efficient and highly specialized enzymes. In contrast, the metabolism of the earliest cellular life forms was likely much simpler with only a few enzymes of comparatively low activity. It has been speculated that these early enzymes had low specificities and in turn were able to perform multiple functions. In this issue of Molecular Microbiology, Ferla et al. describe examples of enzymes that catalyze chemically distinct reactions while using the same active site. Most importantly, the authors demonstrated that the comparatively weak activities of these multifunctional enzymes are each physiologically relevant. These findings contrast with simply promiscuous enzyme activities, which have been described numerous times but are not physiologically relevant. Ferla et al. elegantly combined initial bioinformatics searches for enzyme candidates with sound kinetic measurements, evolutionary considerations and even structural discussions. The phenomenon of multifunctionality appears to be a mechanism for bacteria with reduced genomes to compensate for their lack of certain enzymes. In the broader context of evolution, these organisms could be considered living model systems to study features of long‐extinct early cellular life.  相似文献   

4.
Bacteria remodel peptidoglycan structure in response to environmental changes. Many enzymes are involved in peptidoglycan metabolism; however, little is known about their responsiveness in a defined environment or the modes they assist bacteria to adapt to new niches. Here, we focused in peptidoglycan enzymes that intracellular bacterial pathogens use inside eukaryotic cells. We identified a peptidoglycan enzyme induced by Salmonella enterica serovar Typhimurium in fibroblasts and epithelial cells. This enzyme, which shows γ‐D‐glutamyl‐meso‐diaminopimelic acid D,L‐endopeptidase activity, is also produced by the pathogen in media with limited nutrients and in resting conditions. The enzyme, termed EcgA for e ndopeptidase responding to c essation of g rowth’, is encoded in a S. Typhimurium genomic island absent in Escherichia coli. EcgA production is strictly dependent on the virulence regulator PhoP in extra‐ and intracellular environments. Consistent to this regulation, a mutant lacking EcgA is attenuated in the mouse typhoid model. These findings suggest that specialised peptidoglycan enzymes, such as EcgA, might facilitate Salmonella adaptation to the intracellular lifestyle. Moreover, they indicate that readjustment of peptidoglycan metabolism inside the eukaryotic cell is essential for host colonisation.  相似文献   

5.
《Genomics》2020,112(3):2271-2281
Collagens and collagen-like proteins are found in a wide range of organisms. The common feature of these proteins is a triple helix fold, requiring a characteristic pattern of amino acid sequences, composed of Gly-X-Y tripeptide repeats. Collagen-like proteins from bacteria are heterogeneous in terms of length and amino acid composition of their collagenous sequences. However, different bacteria live in different environments, some at extreme temperatures and conditions. This study explores the occurrence of collagen-like sequences in the genomes of different extreme condition-adapted bacteria, and investigates features that could be linked to conditions where they thrive. Our results show that proteins containing collagen-like sequences are encoded by genomes of various extremophiles. Some of these proteins contain conservative domains, characteristic of cell or endospore surface proteins, while most other proteins are unknown. The characteristics of collagenous sequences may depend on both, the phylogenetic relationship and the living conditions of the bacteria.  相似文献   

6.
The methanogenic endosymbionts of anaerobic protists represent the only known intracellular archaea, yet, almost nothing is known about genome structure and content in these lineages. Here, an almost complete genome of an intracellular Methanobacterium species was assembled from a metagenome derived from its host ciliate, a Heterometopus species. Phylogenomic analysis showed that the endosymbiont was closely related to free‐living Methanobacterium isolates, and when compared with the genomes of free‐living Methanobacterium, the endosymbiont did not show significant reduction in genome size or GC content. Additionally, the Methanobacterium endosymbiont genome shared the majority of its genes with its closest relative, though it did also contain unique genes possibly involved in interactions with the host via membrane‐associated proteins, the removal of toxic by‐products from host metabolism and the production of small signalling molecules. Though anaerobic ciliates have been shown to transmit their endosymbionts to daughter cells during division, the results presented here could suggest that the endosymbiotic Methanobacterium did not experience significant genetic isolation or drift and/or that this lineage was only recently acquired. Altogether, comparative genomic analysis identified genes potentially involved in the establishment and maintenance of the symbiosis, as well provided insight into the genomic consequences for an intracellular archaeum.  相似文献   

7.
8.
Mining enzymes from extreme environments   总被引:1,自引:0,他引:1  
Current advances in metagenomics have revolutionized the research in fields of microbial ecology and biotechnology, enabling not only a glimpse into the uncultured microbial population and mechanistic understanding of possible biogeochemical cycles and lifestyles of extreme organisms but also the high-throughput discovery of new enzymes for industrial bioconversions. Nowadays, the genetic and enzymatic differences across the gradients from 'neutral and pristine' to 'extreme and polluted' environments are well documented. Yet, extremophilic organisms are possibly the least well understood because our ability to study and understand their metabolic potential has been hampered by our inability to isolate pure cultures. There are at least two obstacles for reaping the fruit of the microbial diversity of extremophiles: first, in spite of the recent progress in development of new culturing techniques most extremophiles cannot be cultured using traditional culturing technologies; and second, the problem of the very low biomass densities often occurs under the conditions hostile for life, which often do not yield enough DNA and reduces the effectiveness of cloning.  相似文献   

9.
10.
Although there is great scientific and technological interest in examining the physiology and bioenergetics of microorganisms from extreme environments, difficulties encountered in their cultivation and lack of genetic systems hampers the investigation of these issues. As such, we have adapted methods for continuous cultivation of mesophilic organisms to extremes of temperature and pH to study extremophiles. Since the risk for contamination of extremophilic continuous cultures is relatively small, long-term, steady state experiments investigating physiological response to culture perturbations are possible. Experiments along these lines have provided insights into the significance of specific enzymes in the metabolism of particular substrates, in addition to providing a better understanding of stress response and unusual physiological characteristics of hyperthermophilic and extremely thermoacidophilic microorganisms. Several examples are provided here, including the thermal stress response of Metallosphaera sedula (T(opt) 74 °C) growing at pH 2.0, and the response of the heterotrophic hyperthermophiles Pyrococcus furiosus (T(opt) 98 °C), Thermococcus litoralis (T(opt) 88 °C) and T. maritima (T(opt) 80 °C) to changes in growth medium. Also discussed will be how the same experimental systems have been used to study exopolysaccharide production and biofilm formation by hyperthermophilic heterotrophs and facilitated the estimation of bioenergetic parameters for these organisms under a variety of growth conditions. Continuous culture, used in conjunction with genome sequence information, two-dimensional gel electrophoresis and differential gene expression, can provide important insights into the metabolism of high temperature extremophiles.  相似文献   

11.
The peptidoglycan (PG), as the exoskeleton of most prokaryotes, maintains a defined shape and ensures cell integrity against the high internal turgor pressure. These important roles have attracted researchers to target PG metabolism in order to control bacterial infections. Most studies, however, have been performed in bacteria grown under laboratory conditions, leading to only a partial view on how the PG is synthetized in natural environments. As a case in point, PG metabolism and its regulation remain poorly understood in symbiotic and pathogenic bacteria living inside eukaryotic cells. This review focuses on the PG metabolism of intracellular bacteria, emphasizing the necessity of more in vivo studies involving the analysis of enzymes produced in the intracellular niche and the isolation of PG from bacteria residing within eukaryotic cells. The review also points to persistent infections caused by some intracellular bacterial pathogens and the extent at which the PG could contribute to establish such physiological state. Based on recent evidences, I speculate on the idea that certain structural features of the PG may facilitate attenuation of intracellular growth. Lastly, I discuss recent findings in endosymbionts supporting a cooperation between host and bacterial enzymes to assemble a mature PG.  相似文献   

12.
13.
Enzymes that utilize nicotinamide adenine dinucleotide (NAD) or its 2'-phosphate derivative (NADP) are found throughout the kingdoms of life. These enzymes are fundamental to many biochemical pathways, including central intermediary metabolism and mechanisms for cell survival and defense. The complete genomes of 25 organisms representing bacteria, protists, fungi, plants, and animals, and 811 viruses, were mined to identify and classify NAD(P)-dependent enzymes. An average of 3.4% of the proteins in these genomes was categorized as NAD(P)-utilizing proteins, with highest prevalence in the medium-chain oxidoreductase and short-chain oxidoreductase families. In general, the distribution of these enzymes by oxidoreductase family was correlated to the number of different catalytic mechanisms in each family. Organisms with smaller genomes encoded a larger proportion of NAD(P)-dependent enzymes in their proteome (approximately 6%) as compared to the larger genomes of eukaryotes (approximately 3%). Among viruses, those with large, double-strand DNA genomes were shown to encode oxidoreductases. Gram-positive and gram-negative bacteria showed some differences in the distribution of NAD(P)-dependent proteins. Several organisms such as M. tuberculosis, P. falciparum, and A. thaliana showed unique distributions of oxidoreductases corresponding to some phenotypic features.  相似文献   

14.
Some intracellular bacteria are known to cause long‐term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long‐term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re‐infection and also with the specific expression of stress‐ and survival‐related genes. Our findings identify bacterial traits implicated in the establishment of long‐term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments.  相似文献   

15.
Enzyme promiscuity is the ability of (some) enzymes to perform alternate reactions or catalyze non-cognate substrate(s). The latter is referred to as substrate promiscuity, widely studied for its biotechnological applications and understanding enzyme evolution. Insights into the structural basis of substrate promiscuity would greatly benefit the design and engineering of enzymes. Previous studies on some enzymes have suggested that flexibility, hydrophobicity, and active site protonation state could play an important role in enzyme promiscuity. However, it is not known yet whether substrate promiscuous enzymes have distinctive structural characteristics compared to specialist enzymes, which are specific for a substrate. In pursuit to address this, we have systematically compared substrate/catalytic binding site structural features of substrate promiscuous with those of specialist enzymes. For this, we have carefully constructed dataset of substrate promiscuous and specialist enzymes. On careful analysis, surprisingly, we found that substrate promiscuous and specialist enzymes are similar in various binding/catalytic site structural features such as flexibility, surface area, hydrophobicity, depth, and secondary structures. Recent studies have also alluded that promiscuity is widespread among enzymes. Based on these observations, we propose that substrate promiscuity could be defined as a continuum feature that varies from narrow (specialist) to broad range of substrate preferences. Moreover, diversity of conformational states of an enzyme accessible for ligand binding may possibly regulate its substrate preferences.  相似文献   

16.
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity.  相似文献   

17.
18.
The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically‐relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β‐lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi‐functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly‐active exemplars usually found in textbooks. Instead, primordial‐like enzymes may be an essential part of the adaptive strategy associated with streamlining.  相似文献   

19.
A quantitative index of substrate promiscuity   总被引:1,自引:0,他引:1  
Nath A  Atkins WM 《Biochemistry》2008,47(1):157-166
Catalytic promiscuity is a widespread, but poorly understood, phenomenon among enzymes with particular relevance to the evolution of new functions, drug metabolism, and in vitro biocatalyst engineering. However, there is at present no way to quantitatively measure or compare this important parameter of enzyme function. Here we define a quantitative index of promiscuity (I) that can be calculated from the catalytic efficiencies of an enzyme toward a defined set of substrates. A weighted promiscuity index (J) that accounts for patterns of similarity and dissimilarity among the substrates in the set is also defined. Promiscuity indices were calculated for three different enzyme classes: eight serine and cysteine proteases, two glutathione S-transferase (GST) isoforms, and three cytochrome P450 (CYP) isoforms. The proteases ranged from completely specific (granzyme B, J = 0.00) to highly promiscuous (cruzain, J = 0.83). The four drug-metabolizing enzymes studied (GST A1-1 and the CYP isoforms) were highly promiscuous, with J values between 0.72 and 0.92; GST A4-4, involved in the clearance of lipid peroxidation products, is moderately promiscuous (J = 0.37). Promiscuity indices also allowed for studies of correlation between substrate promiscuity and an enzyme's activity toward its most-favored substrate, for each of the three enzyme classes.  相似文献   

20.
The information provided by completely sequenced genomes can yield insights into the multi-level organization of organisms and their evolution. At the lowest level of molecular organization individual enzymes are formed, often through assembly of multiple polypeptides. At a higher level, sets of enzymes group into metabolic networks. Much has been learned about the relationship of species from phylogenetic trees comparing individual enzymes. In this article we extend conventional phylogenetic analysis of individual enzymes in different organisms to the organisms' metabolic networks. For this purpose we suggest a method that combines sequence information with information about the underlying reaction networks. A distance between pathways is defined as incorporating distances between substrates and distances between corresponding enzymes. The new analysis is applied to electron-transfer and amino acid biosynthesis networks yielding a more comprehensive understanding of similarities and differences between organisms. Received: 14 August 2000 / Accepted: 4 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号