首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,4‐Dihydroxy‐2‐butanone‐4‐phosphate synthase (DHBPS) encoded by ribB gene is one of the first enzymes in riboflavin biosynthesis pathway and catalyzes the conversion of ribulose‐5‐phosphate (Ru5P) to 3,4‐dihydroxy‐2‐butanone‐4‐phosphate and formate. DHBPS is an attractive target for developing anti‐bacterial drugs as this enzyme is essential for pathogens, but absent in humans. The recombinant DHBPS enzyme of Salmonella requires magnesium ion for its activity and catalyzes the formation of 3,4‐dihydroxy‐2‐butanone‐4‐phosphate from Ru5P at a rate of 199 nmol min?1 mg?1 with Km value of 116 μM at 37°C. Further, we have determined the crystal structures of Salmonella DHBPS in complex with sulfate, Ru5P and sulfate‐zinc ion at a resolution of 2.80, 2.52, and 1.86 Å, respectively. Analysis of these crystal structures reveals that the acidic loop (residues 34–39) responsible for the acid‐base catalysis is disordered in the absence of substrate or metal ion at the active site. Upon binding either substrate or sulfate and metal ions, the acidic loop becomes stabilized, adopts a closed conformation and interacts with the substrate. Our structure for the first time reveals that binding of substrate Ru5P alone is sufficient for the stabilization of the acidic active site loop into a closed conformation. In addition, the Glu38 residue from the acidic active site loop undergoes a conformational change upon Ru5P binding, which helps in positioning the second metal ion that stabilizes the Ru5P and the reaction intermediates. This is the first structural report of DHBPS in complex with either substrate or metal ion from any eubacteria. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
α‐Aminoadipate aminotransferase (AAA‐AT) catalyzes the amination of 2‐oxoadipate to α‐aminoadipate in the fourth step of the α‐aminoadipate pathway of lysine biosynthesis in fungi. The aromatic aminotransferase Aro8 has recently been identified as an AAA‐AT in Saccharomyces cerevisiae. This enzyme displays broad substrate selectivity, utilizing several amino acids and 2‐oxo acids as substrates. Here we report the 1.91Å resolution crystal structure of Aro8 and compare it to AAA‐AT LysN from Thermus thermophilus and human kynurenine aminotransferase II. Inspection of the active site of Aro8 reveals asymmetric cofactor binding with lysine‐pyridoxal‐5‐phosphate bound within the active site of one subunit in the Aro8 homodimer and pyridoxamine phosphate and a HEPES molecule bound to the other subunit. The HEPES buffer molecule binds within the substrate‐binding site of Aro8, yielding insights into the mechanism by which it recognizes multiple substrates and how this recognition differs from other AAA‐AT/kynurenine aminotransferases.  相似文献   

3.
The active site of ß‐galactosidase (E. coli) contains a Mg2+ ion ligated by Glu‐416, His‐418 and Glu‐461 plus three water molecules. A Na+ ion binds nearby. To better understand the role of the active site Mg2+ and its ligands, His‐418 was substituted with Asn, Glu and Phe. The Asn‐418 and Glu‐418 variants could be crystallized and the structures were shown to be very similar to native enzyme. The Glu‐418 variant showed increased mobility of some residues in the active site, which explains why the substitutions at the Mg2+ site also reduce Na+ binding affinity. The Phe variant had reduced stability, bound Mg2+ weakly and could not be crystallized. All three variants have low catalytic activity due to large decreases in the degalactosylation rate. Large decreases in substrate binding affinity were also observed but transition state analogs bound as well or better than to native. The results indicate that His‐418, together with the Mg2+, modulate the central role of Glu‐461 in binding and as a general acid/base catalyst in the overall catalytic mechanism. Glucose binding as an acceptor was also dramatically decreased, indicating that His‐418 is very important for the formation of allolactose (the natural inducer of the lac operon).  相似文献   

4.
A good model to experimentally explore evolutionary hypothesis related to enzyme function is the ancient‐like dual‐substrate (βα)8 phosphoribosyl isomerase A (PriA), which takes part in both histidine and tryptophan biosynthesis in Streptomyces coelicolor and related organisms. In this study, we determined the Michaelis–Menten enzyme kinetics for both isomerase activities in wild‐type PriA from S. coelicolor and in selected single‐residue monofunctional mutants, identified after Escherichia coli in vivo complementation experiments. Structural and functional analyses of a hitherto unnoticed residue contained on the functionally important β → α loop 5, namely, Arg139, which was postulated on structural grounds to be important for the dual‐substrate specificity of PriA, is presented for the first time. Indeed, enzyme kinetics analyses done on the mutant variants PriA_Ser81Thr and PriA_Arg139Asn showed that these residues, which are contained on β → α loops and in close proximity to the N‐terminal phosphate‐binding site, are essential solely for the phosphoribosyl anthranilate isomerase activity of PriA. Moreover, analysis of the X‐ray crystallographic structure of PriA_Arg139Asn elucidated at 1.95 Å herein strongly implicates the occurrence of conformational changes in this β → α loop as a major structural feature related to the evolution of the dual‐substrate specificity of PriA. It is suggested that PriA has evolved by tuning a fine energetic balance that allows the sufficient degree of structural flexibility needed for accommodating two topologically dissimilar substrates—within a bifunctional and thus highly constrained active site—without compromising its structural stability.  相似文献   

5.
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo‐ and regio‐selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β‐hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active‐site accessibility, the bases of the specificity for NADP+, and the general architecture of the steroid binding site. Comparison with 7α‐hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C‐terminal extension reshapes the substrate site of the β‐selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859–865. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
In this study, we report two high‐resolution structures of the pyridoxal 5′ phosphate (PLP)‐dependent enzyme kynurenine aminotransferase‐I (KAT‐I). One is the native structure with the cofactor in the PLP form bound to Lys247 with the highest resolution yet available for KAT‐I at 1.28 Å resolution, and the other with the general PLP‐dependent aminotransferase inhibitor, aminooxyacetate (AOAA) covalently bound to the cofactor at 1.54 Å. Only small conformational differences are observed in the vicinity of the aldimine (oxime) linkage with which the PLP forms the Schiff base with Lys247 in the 1.28 Å resolution native structure, in comparison to other native PLP‐bound structures. We also report the inhibition of KAT‐1 by AOAA and aminooxy‐phenylpropionic acid (AOPP), with IC50s of 13.1 and 5.7 μM, respectively. The crystal structure of the enzyme in complex with the inhibitor AOAA revealed that the cofactor is the PLP form with the external aldimine linkage. The location of this oxime with the PLP, which forms in place of the native internal aldimine linkage of PLP of the native KAT‐I, is away from the position of the native internal aldimine, with the free Lys247 substantially retaining the orientation of the native structure. Tyr101, at the active site, was observed in two conformations in both structures.  相似文献   

7.
8.
Hua Li  Gerwald Jogl 《Proteins》2013,81(3):538-543
Decaprenylphosphoryl‐β‐D ‐ribose 2'‐epimerase (DprE1) is an essential enzyme in the biosynthesis of cell wall components and a target for development of anti‐tuberculosis drugs. We determined the crystal structure of a truncated form of DprE1 from Mycobacterium smegmatis in two crystal forms to up to 2.35 Å resolution. The structure extends from residue 75 to the C‐terminus and shares homology with FAD‐dependent oxidoreductases of the vanillyl‐alcohol oxidase family including the DprE1 homologue from M. tuberculosis. The M. smegmatis DprE1 structure reported here provides further insights into the active site geometry of this tuberculosis drug target. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid‐β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal‐binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1–16 fused to the N‐terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti‐Aβ N‐terminal antibody WO2. The structure demonstrates that Aβ residues 10–16, which are not in complex with the antibody, adopt a mixture of local polyproline II‐helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aβ (residues, 10–16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13‐metal‐His14 coordination in the Aβ1–16 fragment implicated in Aβ metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aβ and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N‐terminal monomer structure, in particular residues His13 and His14, and preventing Aβ metal‐binding‐induced neurotoxicity.Proteins 2013; 81:1748–1758. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Enzymes of the glyoxylate shunt are important for the virulence of pathogenic organisms such as Mycobacterium tuberculosis and Candida albicans. Two isoforms have been identified for malate synthase, the second enzyme in the pathway. Isoform A, found in fungi and plants, comprises ~530 residues, whereas isoform G, found only in bacteria, is larger by ~200 residues. Crystal structures of malate synthase isoform G from Escherichia coli and Mycobacterium tuberculosis were previously determined at moderate resolution. Here we describe crystal structures of E. coli malate synthase A (MSA) in the apo form (1.04 Å resolution) and in complex with acetyl‐coenzyme A and a competitive inhibitor, possibly pyruvate or oxalate (1.40 Å resolution). In addition, a crystal structure for Bacillus anthracis MSA at 1.70 Å resolution is reported. The increase in size between isoforms A and G can be attributed primarily to an inserted α/β domain that may have regulatory function. Upon binding of inhibitor or substrate, several active site loops in MSA undergo large conformational changes. However, in the substrate bound form, the active sites of isoforms A and G from E. coli are nearly identical. Considering that inhibitors bind with very similar affinities to both isoforms, MSA is as an excellent platform for high‐resolution structural studies and drug discovery efforts.  相似文献   

11.
The metal-dependent deacetylase LpxC catalyzes the first committed step of lipid A biosynthesis in Gram-negative bacteria. Accordingly, LpxC is an attractive target for the development of inhibitors that may serve as potential new antibiotics for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 A resolution X-ray crystal structure of LpxC complexed with the substrate analogue inhibitor TU-514 and the 2.0 A resolution structure of LpxC complexed with imidazole. The X-ray crystal structure of LpxC complexed with TU-514 allows for a detailed examination of the coordination geometry of the catalytic zinc ion and other enzyme-inhibitor interactions in the active site. The hydroxamate group of TU-514 forms a bidentate chelate complex with the zinc ion and makes hydrogen bond interactions with conserved active site residues E78, H265, and T191. The inhibitor C-4 hydroxyl group makes direct hydrogen bond interactions with E197 and H58. Finally, the C-3 myristate moiety of the inhibitor binds in the hydrophobic tunnel of the active site. These intermolecular interactions provide a foundation for understanding structural aspects of enzyme-substrate and enzyme-inhibitor affinity. Comparison of the TU-514 complex with cacodylate and imidazole complexes suggests a possible substrate diphosphate binding site and highlights residues that may stabilize the tetrahedral intermediate and its flanking transition states in catalysis. Evidence of a catalytic zinc ion in the native zinc enzyme coordinated by H79, H238, D242, and two water molecules with square pyramidal geometry is also presented. These results suggest that the native state of this metallohydrolase may contain a pentacoordinate zinc ion, which contrasts with the native states of archetypical zinc hydrolases such as thermolysin and carboxypeptidase A.  相似文献   

12.
C. elegans MnSOD‐3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD‐3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41–54). We have determined the structure of the MnSOD‐3‐azide complex to 1.77‐Å resolution. Analysis of this complex shows that the substrate analog, azide, binds end‐on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substrate access funnel. This is the first structure of a eukaryotic MnSOD‐azide complex that demonstrates the extended, uninterrupted hydrogen‐bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5‐6‐5 catalytic mechanism for MnSOD. The high product dissociation constant k4 of MnSOD‐3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.  相似文献   

13.
The crystal structure of the GH78 family α‐rhamnosidase from Klebsiella oxytoca (KoRha) has been determined at 2.7 Å resolution with rhamnose bound in the active site of the catalytic domain. Curiously, the putative catalytic acid, Asp 222, is preceded by an unusual non‐proline cis‐peptide bond which helps to project the carboxyl group into the active centre. This KoRha homodimeric structure is significantly smaller than those of the other previously determined GH78 structures. Nevertheless, the enzyme displays α‐rhamnosidase activity when assayed in vitro, suggesting that the additional structural domains found in the related enzymes are dispensible for function. Proteins 2015; 83:1742–1749. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

14.
While the cis‐acyltransferase modular polyketide synthase assembly lines have largely been structurally dissected, enzymes from within the recently discovered trans‐acyltransferase polyketide synthase assembly lines are just starting to be observed crystallographically. Here we examine the ketoreductase (KR) from the first polyketide synthase module of the bacillaene nonribosomal peptide synthetase/polyketide synthase at 2.35‐Å resolution. This KR naturally reduces both α‐ and β‐keto groups and is the only KR known to do so during the biosynthesis of a polyketide. The isolated KR not only reduced an N‐acetylcysteamine‐bound β‐keto substrate to a D ‐β‐hydroxy product, but also an N‐acetylcysteamine‐bound α‐keto substrate to an L ‐α‐hydroxy product. That the substrates must enter the active site from opposite directions to generate these stereochemistries suggests that the acyl‐phosphopantetheine moiety is capable of accessing very different conformations despite being anchored to a serine residue of a docked acyl carrier protein. The features enabling stereocontrolled α‐ketoreduction may not be extensive since a KR that naturally reduces a β‐keto group within a cis‐acyltransferase polyketide synthase was identified that performs a completely stereoselective reduction of the same α‐keto substrate to generate the D ‐α‐hydroxy product. A sequence analysis of trans‐acyltransferase KRs reveals that a single residue, rather than a three‐residue motif found in cis‐acyltransferase KRs, is predictive of the orientation of the resulting β‐hydroxyl group. Proteins 2014; 82:2067–2077. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Unlike most small globular proteins, lipocalins lack a compact hydrophobic core. Instead, they present a large central cavity that functions as the primary binding site for hydrophobic molecules. Not surprisingly, these proteins typically exhibit complex structural dynamics in solution, which is intricately modified by intermolecular recognition events. Although many lipocalins are monomeric, an increasing number of them have been proven to form oligomers. The coupling effects between self‐association and ligand binding in these proteins are largely unknown. To address this issue, we have calorimetrically characterized the recognition of dodecyl sulfate by bovine β‐lactoglobulin, which forms weak homodimers at neutral pH. A thermodynamic analysis based on coupled‐equilibria revealed that dimerization exerts disparate effects on the ligand‐binding capacity of β‐lactoglobulin. Protein dimerization decreases ligand affinity (or, reciprocally, ligand binding promotes dimer dissociation). The two subunits in the dimer exhibit a positive, entropically driven cooperativity. To investigate the structural determinants of the interaction, the crystal structure of β‐lactoglobulin bound to dodecyl sulfate was solved at 1.64 Å resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
α‐Dioxygenases (α‐DOX) are heme‐containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α‐DOX oxygenate a variety of 14–20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro‐R hydrogen from the α‐carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2O2). We determined the X‐ray crystal structures of wild type α‐DOX from Oryza sativa, the wild type enzyme in complex with H2O2, and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α‐DOX such that the carboxylate forms ionic interactions with His‐311 and Arg‐559. Thr‐316 aids in the positioning of carbon‐2 for hydrogen abstraction. Twenty‐five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2O2 structures provides insight into enzyme activation. The binding of H2O2 at the distal face of the heme displaces residues His‐157, Asp‐158, and Trp‐159 ~2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp‐158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp‐159 and Trp‐213 reorient, and the guanidinium group of Arg‐559 is repositioned near Tyr‐379, poised to interact with the carboxylate group of the substrate.  相似文献   

17.
Aminoglycosides were one of the first classes of broad‐spectrum antibacterial drugs clinically used to effectively combat infections. The rise of resistance to these drugs, mediated by enzymatic modification, has since compromised their utility as a treatment option, prompting intensive research into the molecular function of resistance enzymes. Here, we report the crystal structure of aminoglycoside nucleotidyltransferase ANT(4′)‐IIb in apo and tobramycin‐bound forms at a resolution of 1.6 and 2.15 Å, respectively. ANT(4′)‐IIb was discovered in the opportunistic pathogen Pseudomonas aeruginosa and conferred resistance to amikacin and tobramycin. Analysis of the ANT(4′)‐IIb structures revealed a two‐domain organization featuring a mixed β‐sheet and an α‐helical bundle. ANT(4′)‐IIb monomers form a dimer required for its enzymatic activity, as coordination of the aminoglycoside substrate relies on residues contributed by both monomers. Despite harbouring appreciable primary sequence diversity compared to previously characterized homologues, the ANT(4′)‐IIb structure demonstrates a surprising level of structural conservation highlighting the high plasticity of this general protein fold. Site‐directed mutagenesis of active site residues and kinetic analysis provides support for a catalytic mechanism similar to those of other nucleotidyltransferases. Using the molecular insights provided into this ANT(4′)‐IIb‐represented enzymatic group, we provide a hypothesis for the potential evolutionary origin of these aminoglycoside resistance determinants.  相似文献   

18.
Gluconate 5‐dehydrogenase (Ga5DH) is an NADP(H)‐dependent enzyme that catalyzes a reversible oxidoreduction reaction between D ‐gluconate and 5‐keto‐D ‐gluconate, thereby regulating the flux of this important carbon and energy source in bacteria. Despite the considerable amount of physiological and biochemical knowledge of Ga5DH, there is little physical or structural information available for this enzyme. To this end, we herein report the crystal structures of Ga5DH from pathogenic Streptococcus suis serotype 2 in both substrate‐free and liganded (NADP+/D ‐gluconate/metal ion) quaternary complex forms at 2.0 Å resolution. Structural analysis reveals that Ga5DH adopts a protein fold similar to that found in members of the short chain dehydrogenase/reductase (SDR) family, while the enzyme itself represents a previously uncharacterized member of this family. In solution, Ga5DH exists as a tetramer that comprised four identical ~29 kDa subunits. The catalytic site of Ga5DH shows considerable architectural similarity to that found in other enzymes of the SDR family, but the S. suis protein contains an additional residue (Arg104) that plays an important role in the binding and orientation of substrate. The quaternary complex structure provides the first clear crystallographic evidence for the role of a catalytically important serine residue and also reveals an amino acid tetrad RSYK that differs from the SYK triad found in the majority of SDR enzymes. Detailed analysis of the crystal structures reveals important contributions of Ca2+ ions to active site formation and of specific residues at the C‐termini of subunits to tetramer assembly. Because Ga5DH is a potential target for therapy, our findings provide insight not only of catalytic mechanism, but also suggest a target of structure‐based drug design.  相似文献   

19.
The X-ray structure of Escherichia coli TEM1β-lactamase has been refined to a crystallorgphic R-factor of 16.4% for 22,510 reflections between 5.0 and 1.8 Å resolution; 199 water molecules and 1 sulphate ion were included in refinement. Except for the tips of a few solvent-exposed side chains, all protein atoms have clear electron density and refined to an average atomic temperature factor of 11 Å2. The estimated coordinates error is 0.17 Å. The substrate binding site is located at the interface of the two domains of the protein and contains 4 water molecules and the sulphate anion. One of these solvent molecules is found at hydrogen bond distance from S70 and E166. S70 and S130 are hydrogen bonded to K73 and K234, respectively. It was found that the E. coli TEM1 and Staphylococcus aureus PC1 β-lactamases crystal structures differ in the relative orientations of the two domains composing the enzymes, which result in a narrowed substrate binding cavity in the TEM1 enzyme. Local but significant differences in the vicinity of this site may explain the occurrence of TEM1 natural mutants with extended substrate specificities. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease‐associated γ‐secretase. Systematically scanning amyloid precursor protein substrates containing a genetically inserted photocrosslinkable amino acid for binding to γ‐secretase allowed us to identify residues contacting the protease. These were primarily found in the transmembrane cleavage domain of the substrate and were also present in the extramembranous domains. The N‐terminal fragment of the catalytic subunit presenilin was determined as principal substrate‐binding site. Clinical presenilin mutations altered substrate binding in the active site region, implying a pathogenic mechanism for familial Alzheimer's disease. Remarkably, PEN‐2 was identified besides nicastrin as additional substrate‐binding subunit. Probing proteolysis of crosslinked substrates revealed a mechanistic model of how these subunits interact to mediate a stepwise transfer of bound substrate to the catalytic site. We propose that sequential binding steps might be common for intramembrane proteases to sample and select cognate substrates for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号