首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We have determined consensus protein-fold classifications on the basis of three classification methods, SCOP, CATH, and Dali. These classifications make use of different methods of defining and categorizing protein folds that lead to different views of protein-fold space. Pairwise comparisons of domains on the basis of their fold classifications show that much of the disagreement between the classification systems is due to differing domain definitions rather than assigning the same domain to different folds. However, there are significant differences in the fold assignments between the three systems. These remaining differences can be explained primarily in terms of the breadth of the fold classifications. Many structures may be defined as having one fold in one system, whereas far fewer are defined as having the analogous fold in another system. By comparing these folds for a nonredundant set of proteins, the consensus method breaks up broad fold classifications and combines restrictive fold classifications into metafolds, creating, in effect, an averaged view of fold space. This averaged view requires that the structural similarities between proteins having the same metafold be recognized by multiple classification systems. Thus, the consensus map is useful for researchers looking for fold similarities that are relatively independent of the method used to compare proteins. The 30 most populated metafolds, representing the folds of about half of a nonredundant subset of the PDB, are presented here. The full list of metafolds is presented on the Web.  相似文献   

2.
Here, we present an automatic assignment of potential cognate ligands to domains of enzymes in the CATH and SCOP protein domain classifications on the basis of structural data available in the wwPDB. This procedure involves two steps; firstly, we assign the binding of particular ligands to particular domains; secondly, we compare the chemical similarity of the PDB ligands to ligands in KEGG in order to assign cognate ligands. We find that use of the Enzyme Commission (EC) numbers is necessary to enable efficient and accurate cognate ligand assignment. The PROCOGNATE database currently has cognate ligand mapping for 3277 (4118) protein structures and 351 (302) superfamilies, as described by the CATH and (SCOP) databases, respectively. We find that just under half of all ligands are only and always bound by a single domain, with 16% bound by more than one domain and the remainder of the ligands showing a variety of binding modes. This finding has implications for domain recombination and the evolution of new protein functions. Domain architecture or context is also found to affect substrate specificity of particular domains, and we discuss example cases. The most popular PDB ligands are all found to be generic components of crystallisation buffers, highlighting the non-cognate ligand problem inherent in the PDB. In contrast, the most popular cognate ligands are all found to be universal cellular currencies of reducing power and energy such as NADH, FADH2 and ATP, respectively, reflecting the fact that the vast majority of enzymatic reactions utilise one of these popular co-factors. These ligands all share a common adenine ribonucleotide moiety, suggesting that many different domain superfamilies have converged to bind this chemical framework.  相似文献   

3.
    
Chu CK  Feng LL  Wouters MA 《Proteins》2005,60(4):577-583
Structural data mining studies attempt to deduce general principles of protein structure from solved structures deposited in the protein data bank (PDB). The entire database is unsuitable for such studies because it is not representative of the ensemble of protein folds. Given that novel folds continue to be unearthed, some folds are currently unrepresented in the PDB while other folds are overrepresented. Overrepresentation can easily be avoided by filtering the dataset. PDB_SELECT is a well-used representative subset of the PDB that has been deduced by sequence comparison. Specifically, structures with sequences that exhibit a pairwise sequence identity above a threshold value are weeded from the dataset. Although length criteria for pairwise alignments have a structural basis, this automated method of pruning is essentially sequence-based and runs into problems in the twilight zone, possibly resulting in some folds being overrepresented. The value-added structure databases SCOP and CATH are also a potential source of a nonredundant dataset. Here we compare the sequence-derived dataset PDB_SELECT with the structural databases SCOP (Structural Classification Of Proteins) and CATH (Class-Architecture-Topology-Homology). We show that some folds remain overrepresented in the PDB_SELECT dataset while other folds are not represented at all. However, SCOP and CATH also have their own problems such as the labor-intensiveness of the update process and the problem of determining whether all folds are equally or sufficiently distant. We discuss areas where further work is required.  相似文献   

4.
    
The analysis and prediction of protein-protein interaction sites from structural data are restricted by the limited availability of structural complexes that represent the complete protein-protein interaction space. The domain classification schemes CATH and SCOP are normally used independently in the analysis and prediction of protein domain-domain interactions. In this article, the effect of different domain classification schemes on the number and type of domain-domain interactions observed in structural data is systematically evaluated for the SCOP and CATH hierarchies. Although there is a large overlap in domain assignments between SCOP and CATH, 23.6% of CATH interfaces had no SCOP equivalent and 37.3% of SCOP interfaces had no CATH equivalent in a nonredundant set. Therefore, combining both classifications gives an increase of between 23.6 and 37.3% in domain-domain interfaces. It is suggested that if possible, both domain classification schemes should be used together, but if only one is selected, SCOP provides better coverage than CATH. Employing both SCOP and CATH reduces the false negative rate of predictive methods, which employ homology matching to structural data to predict protein-protein interaction by an estimated 6.5%.  相似文献   

5.
    
Getz G  Vendruscolo M  Sachs D  Domany E 《Proteins》2002,46(4):405-415
We present an automated procedure to assign CATH and SCOP classifications to proteins whose FSSP score is available. CATH classification is assigned down to the topology level, and SCOP classification is assigned to the fold level. Because the FSSP database is updated weekly, this method makes it possible to update also CATH and SCOP with the same frequency. Our predictions have a nearly perfect success rate when ambiguous cases are discarded. These ambiguous cases are intrinsic in any protein structure classification that relies on structural information alone. Hence, we introduce the \"twilight zone for structure classification.\" We further suggest that to resolve these ambiguous cases, other criteria of classification, based also on information about sequence and function, must be used.  相似文献   

6.

Background

Since experimental techniques are time and cost consuming, in silico protein structure prediction is essential to produce conformations of protein targets. When homologous structures are not available, fragment-based protein structure prediction has become the approach of choice. However, it still has many issues including poor performance when targets’ lengths are above 100 residues, excessive running times and sub-optimal energy functions. Taking advantage of the reliable performance of structural class prediction software, we propose to address some of the limitations of fragment-based methods by integrating structural constraints in their fragment selection process.

Results

Using Rosetta, a state-of-the-art fragment-based protein structure prediction package, we evaluated our proposed pipeline on 70 former CASP targets containing up to 150 amino acids. Using either CATH or SCOP-based structural class annotations, enhancement of structure prediction performance is highly significant in terms of both GDT_TS (at least +2.6, p-values < 0.0005) and RMSD (−0.4, p-values < 0.005). Although CATH and SCOP classifications are different, they perform similarly. Moreover, proteins from all structural classes benefit from the proposed methodology. Further analysis also shows that methods relying on class-based fragments produce conformations which are more relevant to user and converge quicker towards the best model as estimated by GDT_TS (up to 10% in average). This substantiates our hypothesis that usage of structurally relevant templates conducts to not only reducing the size of the conformation space to be explored, but also focusing on a more relevant area.

Conclusions

Since our methodology produces models the quality of which is up to 7% higher in average than those generated by a standard fragment-based predictor, we believe it should be considered before conducting any fragment-based protein structure prediction. Despite such progress, ab initio prediction remains a challenging task, especially for proteins of average and large sizes. Apart from improving search strategies and energy functions, integration of additional constraints seems a promising route, especially if they can be accurately predicted from sequence alone.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0576-2) contains supplementary material, which is available to authorized users.  相似文献   

7.
    
Seven protein structure comparison methods and two sequence comparison programs were evaluated on their ability to detect either protein homologs or domains with the same topology (fold) as defined by the CATH structure database. The structure alignment programs Dali, Structal, Combinatorial Extension (CE), VAST, and Matras were tested along with SGM and PRIDE, which calculate a structural distance between two domains without aligning them. We also tested two sequence alignment programs, SSEARCH and PSI-BLAST. Depending upon the level of selectivity and error model, structure alignment programs can detect roughly twice as many homologous domains in CATH as sequence alignment programs. Dali finds the most homologs, 321-533 of 1120 possible true positives (28.7%-45.7%), at an error rate of 0.1 errors per query (EPQ), whereas PSI-BLAST finds 365 true positives (32.6%), regardless of the error model. At an EPQ of 1.0, Dali finds 42%-70% of possible homologs, whereas Matras finds 49%-57%; PSI-BLAST finds 36.9%. However, Dali achieves >84% coverage before the first error for half of the families tested. Dali and PSI-BLAST find 9.2% and 5.2%, respectively, of the 7056 possible topology pairs at an EPQ of 0.1 and 19.5, and 5.9% at an EPQ of 1.0. Most statistical significance estimates reported by the structural alignment programs overestimate the significance of an alignment by orders of magnitude when compared with the actual distribution of errors. These results help quantify the statistical distinction between analogous and homologous structures, and provide a benchmark for structure comparison statistics.  相似文献   

8.
The Comparative Toxicogenomics Database is a public resource that promotes understanding about the effects of environmental chemicals on human health. Currently, CTD describes over 184,000 molecular interactions for more than 5,100 chemicals and 16,300 genes/proteins. We have leveraged this dataset of chemical-gene relationships to compute similarity indices following the statistical method of the Jaccard index. These scores are used to produce lists of comparable genes (“GeneComps”) or chemicals (“ChemComps”) based on shared toxicogenomic profiles. GeneComps and ChemComps are now provided for every curated gene and chemical in CTD. ChemComps are particularly significant because they provide a way to group chemicals based upon their biological effects, instead of their physical or structural properties. These metrics provide a novel way to view and classify genes and chemicals and will help advance testable hypotheses about environmental chemical-genedisease networks.

Availability

CTD is freely available at http://ctd.mdibl.org/  相似文献   

9.
The Comparative Toxicogenomics Database (CTD) is a free resource that describes chemical-gene-disease networks to help understand the effects of environmental exposures on human health. The database contains more than 13,500 chemical-disease and 14,200 gene-disease interactions. In CTD, chemicals and genes are associated with a disease via two types of relationships: as a biomarker or molecular mechanism for the disease (M-type) or as a real or putative therapy for the disease (T-type). We leveraged these curated datasets to compute similarity indices that can be used to produce lists of comparable diseases ("DiseaseComps") based upon shared toxicogenomic profiles. This new metric now classifies diseases with common molecular characteristics, instead of the traditional approach of using histology or tissue of origin to define the disorder. In the dawning era of "personalized medicine", this feature provides a new way to view and describe diseases and will help develop testable hypotheses about chemical-gene-disease networks. AVAILABILITY: The database is available for free at http://ctd.mdibl.org/  相似文献   

10.
An Intriguing Controversy over Protein Structural Class Prediction   总被引:9,自引:0,他引:9  
A recent report by Bahar et al. [(1997), Proteins 29, 172–185] indicates that the coupling effects among different amino acid components as originally formulated by K. C. Chou [(1995), Proteins 21, 319–344] are important for improving the prediction of protein structural classes. These authors have further proposed a compact lattice model to illuminate the physical insight contained in the component-coupled algorithm. However, a completely opposite result was concluded by Eisenhaber et al. [(1996), Proteins 25, 169–179], using a different dataset constructed according to their definition. To address such an intriguing controversy, tests were conducted by various approaches for the datasets from an objective database, the SCOP database [Murzin et al. (1995), J. Mol. Biol. 247, 536–540]. The results obtained by both self-consistency and jackknife tests indicate that the overall rates of correct prediction by the algorithm incorporating the coupling effect among different amino acid components are significantly higher than those by the algorithms without counting such an effect. This is fully consistent with the physical reality that the folding of a protein is the result of a collective interaction among its constituent amino acid residues, and hence the coupling effects of different amino acid components must be incorporated in order to improve the prediction quality. It was found by a revisiting the calculation procedures by Eisenhaber et al. that there was a conceptual mistake in constructing the structural class datasets and a systematic mistake in applying the component-coupled algorithm. These findings are informative for understanding and utilizing the component-coupled algorithm to study the structural classes of proteins.  相似文献   

11.
    
PomBase (www.pombase.org), the model organism database (MOD) for the fission yeast Schizosaccharomyces pombe, supports research within and beyond the S. pombe community by integrating and presenting genetic, molecular, and cell biological knowledge into intuitive displays and comprehensive data collections. With new content, novel query capabilities, and biologist-friendly data summaries and visualization, PomBase also drives innovation in the MOD community.  相似文献   

12.
The curation of genetic variants from biomedical articles is required for various clinical and research purposes. Nowadays, establishment of variant databases that include overall information about variants is becoming quite popular. These databases have immense utility, serving as a user-friendly information storehouse of variants for information seekers. While manual curation is the gold standard method for curation of variants, it can turn out to be time-consuming on a large scale thus necessitating the need for automation. Curation of variants described in biomedical literature may not be straightforward mainly due to various nomenclature and expression issues. Though current trends in paper writing on variants is inclined to the standard nomenclature such that variants can easily be retrieved, we have a massive store of variants in the literature that are present as non-standard names and the online search engines that are predominantly used may not be capable of finding them. For effective curation of variants, knowledge about the overall process of curation, nature and types of difficulties in curation, and ways to tackle the difficulties during the task are crucial. Only by effective curation, can variants be correctly interpreted. This paper presents the process and difficulties of curation of genetic variants with possible solutions and suggestions from our work experience in the field including literature support. The paper also highlights aspects of interpretation of genetic variants and the importance of writing papers on variants following standard and retrievable methods.  相似文献   

13.
Copper and iron play important roles in a variety of biological processes, especially when being chelated with proteins. The proteins involved in the metal binding, transporting and metabolism have aroused much interest. To facilitate the study on this topic, we constructed two databases (DCCP and DICP) containing the known copper- and iron-chelating proteins~ which are freely available from the website http://sdbi.sdut.edu.cn/en. Users can conveniently search and browse all of the entries in the databases. Based on the two databases, bioinformatic analyses were performed, which provided some novel insights into metalloproteins.  相似文献   

14.
    
Tobi D 《Proteins》2012,80(4):1167-1176
A novel methodology for comparison of protein dynamics is presented. Protein dynamics is calculated using the Gaussian network model and the modes of motion are globally aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. The alignment is fast and can be used to analyze large sets of proteins. The methodology is applied to the four major classes of the SCOP database: \"all alpha proteins,\" \"all beta proteins,\" \"alpha and beta proteins,\" and \"alpha/beta proteins\". We show that different domains may have similar global dynamics. In addition, we report that the dynamics of \"all alpha proteins\" domains are less specific to structural variations within a given fold or superfamily compared with the other classes. We report that domain pairs with the most similar and the least similar global dynamics tend to be of similar length. The significance of the methodology is that it suggests a new and efficient way of mapping between the global structural features of protein families/subfamilies and their encoded dynamics.  相似文献   

15.
    
The fission yeast Schizosaccharomyces japonicus has recently emerged as a powerful system for studying the evolution of essential cellular processes, drawing on similarities as well as key differences between S. japonicus and the related, well-established model Schizosaccharomyces pombe. We have deployed the open-source, modular code and tools originally developed for PomBase, the S. pombe model organism database (MOD), to create JaponicusDB (www.japonicusdb.org), a new MOD dedicated to S. japonicus. By providing a central resource with ready access to a growing body of experimental data, ontology-based curation, seamless browsing and querying, and the ability to integrate new data with existing knowledge, JaponicusDB supports fission yeast biologists to a far greater extent than any other source of S. japonicus data. JaponicusDB thus enables S. japonicus researchers to realize the full potential of studying a newly emerging model species and illustrates the widely applicable power and utility of harnessing reusable PomBase code to build a comprehensive, community-maintainable repository of species-relevant knowledge.  相似文献   

16.
17.
GeneDB (http://www.genedb.org) is a generic database designed to house annotated and curated sequencing data for small genomes, together with a comprehensive array of genomic and proteomic information, collated from publicly available sources. This first release is a prototype designed with input from the research community and is still under continual development. At present, data from Leishmania major and Trypanosoma brucei are integrated into GeneDB. This user-friendly database will add significantly to the valuable resources already available to the research community via the web.  相似文献   

18.
细胞外基质(extracellular matrix,ECM)是细胞微环境的重要组成部分,它不仅能为细胞提供物理支持,而且还参与了多种生物学过程。近年来,已经鉴定出来数百种与癌症相关的ECM(cancer-related ECM,C-ECM)基因,其中一些已作为潜在靶标。目前,有关于C-ECM基因的丰富信息还散布在成千上万的出版物中,并且它们在肿瘤发生过程中的作用也未被系统的整理。本文构建了CECMAtlas数据库(http://biokb.ncpsb.org.cn/CECMAtlas/),该数据库使用文献挖掘和人工判读收集了225个C-ECM基因,以及相关生物学过程信息,该数据库将有助于研究肿瘤的发生机制和开展可能的临床应用。  相似文献   

19.
The measurement of biodiversity is an integral aspect of life science research. With the establishment of second- and third-generation sequencing technologies, an increasing amount of metabarcoding data is being generated as we seek to describe the extent and patterns of biodiversity in multiple contexts. The reliability and accuracy of taxonomically assigning metabarcoding sequencing data have been shown to be critically influenced by the quality and completeness of reference databases. Custom, curated, eukaryotic reference databases, however, are scarce, as are the software programs for generating them. Here, we present crabs (Creating Reference databases for Amplicon-Based Sequencing), a software package to create custom reference databases for metabarcoding studies. crabs includes tools to download sequences from multiple online repositories (i.e., NCBI, BOLD, EMBL, MitoFish), retrieve amplicon regions through in silico PCR analysis and pairwise global alignments, curate the database through multiple filtering parameters (e.g., dereplication, sequence length, sequence quality, unresolved taxonomy, inclusion/exclusion filter), export the reference database in multiple formats for immediate use in taxonomy assignment software, and investigate the reference database through implemented visualizations for diversity, primer efficiency, reference sequence length, database completeness and taxonomic resolution. crabs is a versatile tool for generating curated reference databases of user-specified genetic markers to aid taxonomy assignment from metabarcoding sequencing data. crabs can be installed via docker and is available for download as a conda package and via GitHub ( https://github.com/gjeunen/reference_database_creator ).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号