共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein side chains make most of the specific contacts between proteins and other molecules, and their conformational properties have been studied for many years. These properties have been analyzed primarily in the form of rotamer libraries, which cluster the observed conformations into groups and provide frequencies and average dihedral angles for these groups. In recent years, these libraries have improved with higher resolution structures and using various criteria such as high thermal factors to eliminate side chains that may be misplaced within the crystallographic model coordinates. Many of these side chains have highly non-rotameric dihedral angles. The origin of side chains with high B-factors and/or with non-rotameric dihedral angles is of interest in the determination of protein structures and in assessing the prediction of side chain conformations. In this paper, using a statistical analysis of the electron density of a large set of proteins, it is shown that: (1) most non-rotameric side chains have low electron density compared to rotameric side chains; (2) up to 15% of chi1 non-rotameric side chains in PDB models can clearly be fit to density at a single rotameric conformation and in some cases multiple rotameric conformations; (3) a further 47% of non-rotameric side chains have highly dispersed electron density, indicating potentially interconverting rotameric conformations; (4) the entropy of these side chains is close to that of side chains annotated as having more than one chi(1) rotamer in the crystallographic model; (5) many rotameric side chains with high entropy clearly show multiple conformations that are not annotated in the crystallographic model. These results indicate that modeling of side chains alternating between rotamers in the electron density is important and needs further improvement, both in structure determination and in structure prediction. 相似文献
2.
3.
Soraya de Chadarevian 《Protein science : a publication of the Protein Society》2018,27(6):1136-1143
The essay reviews John Kendrew's pioneering work on the structure of myoglobin for which he shared the Nobel Prize for Chemistry in 1962. It reconstructs the status of protein X‐ray crystallography at the time Kendrew entered the field in 1945, after distinctive service in operational research during the war. It reflects on the choice of sperm whale myoglobin as research material. In particular, it highlights Kendrew's early use of digital electronic computers for crystallographic computations and the marshaling of other tools and approaches that made it possible to solve the structure at increasing resolution. The essay further discusses the role of models in structure resolution and their broader reception. It ends by briefly reviewing Kendrew's other contributions in the formation and institutionalization of molecular biology. 相似文献
4.
Karin E. van Straaten Claudio F. Gonzalez Ricardo B. Valladares Xiaohui Xu Alexei V. Savchenko David A. R. Sanders 《Protein science : a publication of the Protein Society》2009,18(10):2196-2202
The structure of the Atu1476 protein from Agrobacterium tumefaciens was determined at 2 Å resolution. The crystal structure and biochemical characterization of this enzyme support the conclusion that this protein is an S-formylglutathione hydrolase (AtuSFGH). The three-dimensional structure of AtuSFGH contains the α/β hydrolase fold topology and exists as a homo-dimer. Contacts between the two monomers in the dimer are formed both by hydrogen bonds and salt bridges. Biochemical characterization reveals that AtuSFGH hydrolyzes C—O bonds with high affinity toward short to medium chain esters, unlike the other known SFGHs which have greater affinity toward shorter chained esters. A potential role for Cys54 in regulation of enzyme activity through S-glutathionylation is also proposed. 相似文献
5.
P Therese Lang Ho-Leung Ng James S Fraser Jacob E Corn Nathaniel Echols Mark Sales James M Holton Tom Alber 《Protein science : a publication of the Protein Society》2010,19(7):1420-1431
Although proteins populate large structural ensembles, X-ray diffraction data are traditionally interpreted using a single model. To search for evidence of alternate conformers, we developed a program, Ringer, which systematically samples electron density around the dihedral angles of protein side chains. In a diverse set of 402 structures, Ringer identified weak, nonrandom electron-density features that suggest of the presence of hidden, lowly populated conformations for >18% of uniquely modeled residues. Although these peaks occur at electron-density levels traditionally regarded as noise, statistically significant (P < 10−5) enrichment of peaks at successive rotameric χ angles validates the assignment of these features as unmodeled conformations. Weak electron density corresponding to alternate rotamers also was detected in an accurate electron density map free of model bias. Ringer analysis of the high-resolution structures of free and peptide-bound calmodulin identified shifts in ensembles and connected the alternate conformations to ligand recognition. These results show that the signal in high-resolution electron density maps extends below the traditional 1 σ cutoff, and crystalline proteins are more polymorphic than current crystallographic models. Ringer provides an objective, systematic method to identify previously undiscovered alternate conformations that can mediate protein folding and function. 相似文献
6.
7.
We report a clustering of public human protein kinase structures based on the conformations of two structural elements, the activation segment and the C-helix, revealing three discrete clusters. One cluster includes kinases in catalytically active conformations. Each of the other clusters contains a distinct inactive conformation. Typically, kinases adopt at most one of the inactive conformations in available X-ray structures, implying that one of the conformations is preferred for many kinases. The classification is consistent with selectivity profiles of several well-characterized kinase inhibitors. We show further that inhibitor selectivity profiles guide kinase classification. For example, selective inhibition of lck among src-family kinases by imatinib (Gleevec) suggests that the relative stabilities of inactive conformations of lck are different from other src-family kinases. We report the X-ray structure of the lck/imatinib complex, confirming that the conformation adopted by lck is distinct from other structurally-characterized src-family kinases and instead resembles kinases abl1 and kit in complex with imatinib. Our classification creates new paths for designing small-molecule inhibitors. 相似文献
8.
Samantha Perez-Miller Qin Zou Milos V Novotny Thomas D Hurley 《Protein science : a publication of the Protein Society》2010,19(8):1469-1479
In mice, the major urinary proteins (MUP) play a key role in pheromonal communication by binding and transporting semiochemicals. MUP‐IV is the only isoform known to be expressed in the vomeronasal mucosa. In comparison with the MUP isoforms that are abundantly excreted in the urine, MUP‐IV is highly specific for the male mouse pheromone 2‐sec‐butyl‐4,5‐dihydrothiazole (SBT). To examine the structural basis of this ligand preference, we determined the X‐ray crystal structure of MUP‐IV bound to three mouse pheromones: SBT, 2,5‐dimethylpyrazine, and 2‐heptanone. We also obtained the structure of MUP‐IV with 2‐ethylhexanol bound in the cavity. These four structures show that relative to the major excreted MUP isoforms, three amino acid substitutions within the binding calyx impact ligand coordination. The F103 for A along with F54 for L result in a smaller cavity, potentially creating a more closely packed environment for the ligand. The E118 for G substitution introduces a charged group into a hydrophobic environment. The sidechain of E118 is observed to hydrogen bond to polar groups on all four ligands with nearly the same geometry as seen for the water‐mediated hydrogen bond network in the MUP‐I and MUP‐II crystal structures. These differences in cavity size and interactions between the protein and ligand are likely to contribute to the observed specificity of MUP‐IV. 相似文献
9.
SF3a is an evolutionarily conserved heterotrimeric complex essential for pre-mRNA splicing. It functions in spliceosome assembly within the mature U2 snRNP (small nuclear ribonucleoprotein particle), and its displacement from the spliceosome initiates the first step of the splicing reaction. We have identified a core domain of the yeast SF3a complex required for complex assembly and determined its crystal structure. The structure shows a bifurcated assembly of three subunits, Prp9, Prp11 and Prp21, with Prp9 interacting with Prp21 via a bidentate-binding mode, and Prp21 wrapping around Prp11. Structure-guided biochemical analysis also shows that Prp9 harbours a major binding site for stem-loop IIa of U2 snRNA. These findings provide mechanistic insights into the assembly of U2 snRNP. 相似文献
10.
11.
Jingzhi Li Kimberly F. Jaimes Stephen G. Aller 《Protein science : a publication of the Protein Society》2014,23(1):34-46
The recently determined C. elegans P‐glycoprotein (Pgp) structure revealed significant deviations compared to the original mouse Pgp structure, which suggested possible misinterpretations in the latter model. To address this concern, we generated an experimental electron density map from single‐wavelength anomalous dispersion phasing of an original mouse Pgp dataset to 3.8 Å resolution. The map exhibited significantly more detail compared to the original MAD map and revealed several regions of the structure that required de novo model building. The improved drug‐free structure was refined to 3.8 Å resolution with a 9.4 and 8.1% decrease in Rwork and Rfree, respectively, (Rwork = 21.2%, Rfree = 26.6%) and a significant improvement in protein geometry. The improved mouse Pgp model contains ~95% of residues in the favorable Ramachandran region compared to only 57% for the original model. The registry of six transmembrane helices was corrected, revealing amino acid residues involved in drug binding that were previously unrecognized. Registry shifts (rotations and translations) for three transmembrane (TM)4 and TM5 and the addition of three N‐terminal residues were necessary, and were validated with new mercury labeling and anomalous Fourier density. The corrected position of TM4, which forms the frame of a portal for drug entry, had backbone atoms shifted >6 Å from their original positions. The drug translocation pathway of mouse Pgp is 96% identical to human Pgp and is enriched in aromatic residues that likely play a collective role in allowing a high degree of polyspecific substrate recognition. 相似文献
12.
Almagro JC Beavers MP Hernandez-Guzman F Maier J Shaulsky J Butenhof K Labute P Thorsteinson N Kelly K Teplyakov A Luo J Sweet R Gilliland GL 《Proteins》2011,79(11):3050-3066
A blinded study to assess the state of the art in three‐dimensional structure modeling of the variable region (Fv) of antibodies was conducted. Nine unpublished high‐resolution x‐ray Fab crystal structures covering a wide range of antigen‐binding site conformations were used as benchmark to compare Fv models generated by four structure prediction methodologies. The methodologies included two homology modeling strategies independently developed by CCG (Chemical Computer Group) and Accerlys Inc, and two fully automated antibody modeling servers: PIGS (Prediction of ImmunoGlobulin Structure), based on the canonical structure model, and Rosetta Antibody Modeling, based on homology modeling and Rosetta structure prediction methodology. The benchmark structure sequences were submitted to Accelrys and CCG and a set of models for each of the nine antibody structures were generated. PIGS and Rosetta models were obtained using the default parameters of the servers. In most cases, we found good agreement between the models and x‐ray structures. The average rmsd (root mean square deviation) values calculated over the backbone atoms between the models and structures were fairly consistent, around 1.2 Å. Average rmsd values of the framework and hypervariable loops with canonical structures (L1, L2, L3, H1, and H2) were close to 1.0 Å. H3 prediction yielded rmsd values around 3.0 Å for most of the models. Quality assessment of the models and the relative strengths and weaknesses of the methods are discussed. We hope this initiative will serve as a model of scientific partnership and look forward to future antibody modeling assessments. Proteins 2011; © 2011 Wiley‐Liss, Inc. 相似文献
13.
Vishnu Priyanka Reddy Chichili Veerendra Kumar J. Sivaraman 《Protein science : a publication of the Protein Society》2013,22(2):153-167
Linkers or spacers are short amino acid sequences created in nature to separate multiple domains in a single protein. Most of them are rigid and function to prohibit unwanted interactions between the discrete domains. However, Gly‐rich linkers are flexible, connecting various domains in a single protein without interfering with the function of each domain. The advent of recombinant DNA technology made it possible to fuse two interacting partners with the introduction of artificial linkers. Often, independent proteins may not exist as stable or structured proteins until they interact with their binding partner, following which they gain stability and the essential structural elements. Gly‐rich linkers have been proven useful for these types of unstable interactions, particularly where the interaction is weak and transient, by creating a covalent link between the proteins to form a stable protein–protein complex. Gly‐rich linkers are also employed to form stable covalently linked dimers, and to connect two independent domains that create a ligand‐binding site or recognition sequence. The lengths of linkers vary from 2 to 31 amino acids, optimized for each condition so that the linker does not impose any constraints on the conformation or interactions of the linked partners. Various structures of covalently linked protein complexes have been described using X‐ray crystallography, nuclear magnetic resonance and cryo‐electron microscopy techniques. In this review, we evaluate several structural studies where linkers have been used to improve protein quality, to produce stable protein–protein complexes, and to obtain protein dimers. 相似文献
14.
Nina Forsgren Richard J. Lamont Karina Persson 《Protein science : a publication of the Protein Society》2009,18(9):1896-1905
The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V‐) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V‐domain from S. gordonii SspB at 2.3 Å resolution. The domain comprises a β‐supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V‐domain is similar to the previously reported V‐domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V‐domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V‐domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates. 相似文献
15.
《MABS-AUSTIN》2013,5(5):838-852
Knowledge of the 3-dimensional structure of the antigen-binding region of antibodies enables numerous useful applications regarding the design and development of antibody-based drugs. We present a knowledge-based antibody structure prediction methodology that incorporates concepts that have arisen from an applied antibody engineering environment. The protocol exploits the rich and continuously growing supply of experimentally derived antibody structures available to predict CDR loop conformations and the packing of heavy and light chain quickly and without user intervention. The homology models are refined by a novel antibody-specific approach to adapt and rearrange sidechains based on their chemical environment. The method achieves very competitive all-atom root mean square deviation values in the order of 1.5 Å on different evaluation datasets consisting of both known and previously unpublished antibody crystal structures. 相似文献
16.
Yan Wang Jouko Virtanen Zhidong Xue John J. G. Tesmer Yang Zhang 《Acta Crystallographica. Section D, Structural Biology》2016,72(5):616-628
Molecular replacement (MR) often requires templates with high homology to solve the phase problem in X‐ray crystallography. I‐TASSER‐MR has been developed to test whether the success rate for structure determination of distant‐homology proteins could be improved by a combination of iterative fragmental structure‐assembly simulations with progressive sequence truncation designed to trim regions with high variation. The pipeline was tested on two independent protein sets consisting of 61 proteins from CASP8 and 100 high‐resolution proteins from the PDB. After excluding homologous templates, I‐TASSER generated full‐length models with an average TM‐score of 0.773, which is 12% higher than the best threading templates. Using these as search models, I‐TASSER‐MR found correct MR solutions for 95 of 161 targets as judged by having a TFZ of >8 or with the final structure closer to the native than the initial search models. The success rate was 16% higher than when using the best threading templates. I‐TASSER‐MR was also applied to 14 protein targets from structure genomics centers. Seven of these were successfully solved by I‐TASSER‐MR. These results confirm that advanced structure assembly and progressive structural editing can significantly improve the success rate of MR for targets with distant homology to proteins of known structure. 相似文献
17.
Voronov-Goldman M Lamed R Noach I Borovok I Kwiat M Rosenheck S Shimon LJ Bayer EA Frolow F 《Proteins》2011,79(1):50-60
18.
19.
The relative stability of protein structures determined by either X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy has been investigated by using molecular dynamics simulation techniques. Published structures of 34 proteins containing between 50 and 100 residues have been evaluated. The proteins selected represent a mixture of secondary structure types including all alpha, all beta, and alpha/beta. The proteins selected do not contain cysteine-cysteine bridges. In addition, any crystallographic waters, metal ions, cofactors, or bound ligands were removed before the systems were simulated. The stability of the structures was evaluated by simulating, under identical conditions, each of the proteins for at least 5 ns in explicit solvent. It is found that not only do NMR-derived structures have, on average, higher internal strain than structures determined by X-ray crystallography but that a significant proportion of the structures are unstable and rapidly diverge in simulations. 相似文献
20.
《Journal of molecular recognition : JMR》2017,30(8)
In this review, we address a fundamental question: What is the range of conformational energies seen in ligands in protein‐ligand crystal structures? This value is important biophysically, for better understanding the protein‐ligand binding process; and practically, for providing a parameter to be used in many computational drug design methods such as docking and pharmacophore searches. We synthesize a selection of previously reported conflicting results from computational studies of this issue and conclude that high ligand conformational energies really are present in some crystal structures. The main source of disagreement between different analyses appears to be due to divergent treatments of electrostatics and solvation. At the same time, however, for many ligands, a high conformational energy is in error, due to either crystal structure inaccuracies or incorrect determination of the reference state. Aside from simple chemistry mistakes, we argue that crystal structure error may mainly be because of the heuristic weighting of ligand stereochemical restraints relative to the fit of the structure to the electron density. This problem cannot be fixed with improvements to electron density fitting or with simple ligand geometry checks, though better metrics are needed for evaluating ligand and binding site chemistry in addition to geometry during structure refinement. The ultimate solution for accurately determining ligand conformational energies lies in ultrahigh‐resolution crystal structures that can be refined without restraints. 相似文献