首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an additional helical subdomain. We designed and produced a number of mutants with the aim to increase its thermostability. Five mutants were designed to create new electrostatic interactions. They all retained catalytic activity but exhibited decreased thermostability relative to the wild-type enzyme. Here, the stabilizing contributions are obviously smaller than the destabilization caused by the introduction of the new side chains. In another mutant, the small helical subdomain was deleted. This mutant lost activity but its melting point was only 3 degrees C lower than that of the wild-type enzyme, which suggests that the subdomain is an independent folding unit and is important for catalytic function. A double mutant was designed to introduce a new disulfide bridge into the enzyme. This mutant is active and has an increased stability (deltaT(m)=3 degrees C, delta(deltaG(u))=1.73 kcal/mol) relative to the wild-type enzyme. Reduction of the disulfide bridge results in destabilization and an altered thermal denaturation behavior. We conclude that rules learned from thermophilic proteins cannot be used in a straightforward way to increase the thermostability of a protein. Creating a crosslink such as a disulfide bond is a relatively sure-fire method but the stabilization may be smaller than calculated due to coupled destabilizing effects.  相似文献   

2.
Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate-determining transition state plus the catalytic groups modeled by side-chain mimics was optimized using B3LYP/6-31G(d) or, in one case, HF/3-21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X-ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate-active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 A from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 A. The implications for computational enzyme design are discussed.  相似文献   

3.
Insulin plays a central role in the regulation of metabolism in humans. Mutations in the insulin gene can impair the folding of its precursor protein, proinsulin, and cause permanent neonatal‐onset diabetes mellitus known as Mutant INS‐gene induced Diabetes of Youth (MIDY) with insulin deficiency. To gain insights into the molecular basis of this diabetes‐associated mutation, we perform molecular dynamics simulations in wild‐type and mutant (CysA7 to Tyr or C(A7)Y) insulin A chain in aqueous solutions. The C(A7)Y mutation is one of the identified mutations that impairs the protein folding by substituting the cysteine residue which is required for the disulfide bond formation. A comparative analysis reveals structural differences between the wild‐type and the mutant conformations. The analyzed mutant insulin A chain forms a metastable state with major effects on its N‐terminal region. This suggests that MIDY mutant involves formation of a partially folded intermediate with conformational change in N‐terminal region in A chain that generates flexible N‐terminal domain. This may lead to the abnormal interactions with other proinsulins in the aggregation process. Proteins 2015; 83:662–669. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations.  相似文献   

5.
Protein engineering of disulfide bonds in subtilisin BPN'   总被引:7,自引:0,他引:7  
C Mitchinson  J A Wells 《Biochemistry》1989,28(11):4807-4815
Five single-disulfide mutants were studied in subtilisin BPN', a cysteine-free, secreted serine protease from Bacillus amyloliquefaciens. The disulfides were engineered between residues 26-232, 29-119, 36-210, 41-80, and 148-243. These bonds connected a variety of secondary structural elements, located in buried or exposed positions at least 10 A from the catalytic Ser-221, and linked residues that were separated by 39 up to 206 amino acids. All disulfide bonds formed in the enzyme when the expressed protein was secreted from Bacillus subtilis, and the disulfides had only minor effects on the enzyme kinetics. Although these disulfide bonds varied by over 50-fold in their equilibrium constants for reduction with dithiothreitol, there was no correlation between the strength of the disulfide bond and the stability it imparted to the enzyme to irreversible inactivation. In some cases, the disulfide-bonded protein was stabilized greatly relative to its reduced counterpart. However, no disulfide mutant was substantially more stable than wild-type subtilisin BPN'. Some of these results can be rationalized by destabilizing effects of the cysteine mutations that disrupt interactions present in the folded enzyme structure. It is also possible that the rate of irreversible inactivation depends upon the kinetics and not the thermodynamics of unfolding and so the entropically stabilizing effect expected from a disulfide bond may not apply.  相似文献   

6.
Protease IV is a lysine-specific endoprotease produced by Pseudomonas aeruginosa whose activity has been correlated with corneal virulence. Comparison of the protease IV amino acid sequence to other bacterial proteases suggested that amino acids His-72, Asp-122, and Ser-198 could form a catalytic triad that is critical for protease IV activity. To test this possibility, site-directed mutations by alanine substitution were introduced into six selected residues including the predicted triad and identical residues located close to the triad. Mutations at any of the amino acids of the predicted catalytic triad or Ser-197 caused a loss of enzymatic activity and absence of the mature form of protease IV. In contrast, mutations at His-116 or Ser-200 resulted in normal processing into the enzymatically active mature form. A purified proenzyme that accumulated in the His-72 mutant was shown in vitro to be susceptible to cleavage by protease IV purified from P. aeruginosa. Furthermore, similarities of protease IV to the lysine-specific endoprotease of Achromobacter lyticus suggested three possible disulfide bonds in protease IV. These results identify the catalytic triad of protease IV, demonstrate that autodigestion is essential for the processing of protease IV into a mature protease, and predict sites essential to enzyme conformation.  相似文献   

7.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.  相似文献   

8.
Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.  相似文献   

9.
It is recognized that an ideal anti-cocaine treatment is to accelerate cocaine metabolism by producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., butyrylcholinesterase (BChE)-catalyzed hydrolysis of cocaine. BChE mutants with a higher catalytic activity against (-)-cocaine are highly desired for use as an exogenous enzyme in humans. To develop a rational design for high-activity mutants, we carried out free-energy perturbation (FEP) simulations on various mutations of the transition-state structures in addition to the corresponding free-enzyme structures by using an extended FEP procedure. The FEP simulations on the mutations of both the free-enzyme and transition-state structures allowed us to calculate the mutation-caused shift of the free-energy change from the free enzyme (BChE) to the transition state, and thus to theoretically predict the mutation-caused shift of the catalytic efficiency (kcat/KM). The computational predictions are supported by the kinetic data obtained from the wet experiments, demonstrating that the FEP-based computational design approach is promising for rational design of high-activity mutants of an enzyme. One of the BChE mutants designed and discovered in this study has an ∼1800-fold improved catalytic efficiency against (-)-cocaine compared to wild-type BChE. The high-activity mutant may be therapeutically valuable.  相似文献   

10.
Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild‐type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox‐active di‐cysteine motifs in the enzyme, presenting the entire electron‐transfer pathway and proton‐transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X‐ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur.  相似文献   

11.
Human glutaredoxin (GRx), also known as thioltransferase, is a 12 kDa thiol-disulfide oxidoreductase that is highly selective for reduction of glutathione-containing mixed disulfides. The apparent pK(a) for the active site Cys22 residue is approximately 3.5. Previously we observed that the catalytic enhancement by glutaredoxin could be ascribed fully to the difference between the pK(a) of its Cys22 thiol moiety and the pK(a) of the product thiol, each acting as a leaving group in the enzymatic and nonenzymatic reactions, respectively [Srinivasan et al. (1997), Biochemistry 36, 3199-3206]. Continuum electrostatic calculations suggest that the low pK(a) of Cys22 results primarily from stabilization of the thiolate anion by a specific ion-pairing with the positively charged Lys19 residue, although hydrogen bonding interactions with Thr21 also appear to contribute. Variants of Lys19 were considered to further assess the predicted role of Lys19 on the pK(a) of Cys22. The variants K19Q and K19L were generated by molecular modeling, and the pK(a) value for Cys22 was calculated for each variant. For K19Q, the predicted Cys22 pK(a) is 7.3, while the predicted value is 8.3 for K19L. The effects of the mutations on the interaction energy between the adducted glutathionyl moiety and GRx were roughly estimated from the van der Waals and electrostatic energies between the glutathionyl moiety and proximal protein residues in a mixed disulfide adduct of GRx and glutathione, i.e., the GRx-SSG intermediate. The values for the K19 mutants differed by only a small amount compared to those for the wild type enzyme intermediate. Together, the computational analysis predicted that the mutant enzymes would have markedly reduced catalytic rates while retaining the glutathionyl specificity displayed by the wild type enzyme. Accordingly, we constructed and characterized the K19L and K19Q mutants of two forms of the GRx enzyme. Each of the mutants retained glutathionyl specificity as predicted and displayed diminution in activity, but the decreases in activity were not to the extent predicted by the theoretical calculations. Changes in the respective Cys22-thiol pK(a) values of the mutant enzymes, as shown by pH profiles for iodoacetamide inactivation of the respective enzymes, clearly revealed that the K19-C22 ion pair cannot fully account for the low pK(a) of the Cys22 thiol. Additional contributions to stabilization of the Cys22 thiolate are likely donated by Thr21 and the N-terminal partial positive charge of the neighboring alpha-helix.  相似文献   

12.
Abstract

Oligopeptidases B (OpdBs) are trypsin-like peptidases from protozoa and bacteria that belong to the prolyl oligopeptidase (POP) family. All POPs consist of C-terminal catalytic domain and N-terminal β-propeller domain and exist in two major conformations: closed (active), where the domains and residues of the catalytic triad are positioned close to each other, and open (non-active), where two domains and residues of the catalytic triad are separated. The interdomain interface, particularly, one of its salt bridges (SB1), plays a role in the transition between these two conformations. However, due to double amino acid substitution (E/R and R/Q), this functionally important SB1 is absent in γ-proteobacterial OpdBs including peptidase from Serratia proteamaculans (PSP). In this study, molecular dynamics was used to analyze inter- and intradomain interactions stabilizing PSP in the closed conformation, in which catalytic H652 is located close to other residues of the catalytic triad. The 3D models of either wild-type PSP or of mutant PSPs carrying activating mutations E125A and D649A in complexes with peptide-substrates were subjected to the analysis. The mechanism that regulates transition of H652 from active to non-active conformation upon domain separation in PSP and other γ-proteobacterial OpdB was proposed. The complex network of polar interactions within H652-loop/C-terminal α-helix and between these areas and β-propeller domain, established in silico, was in a good agreement with both previously published results on the effects of single-residue mutations and new data on the effects of the activating mutations on each other and on the low active mutant PSP-K655A.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
The intracellular protease from Pyrococcus horikoshii (PhpI) is a member of the DJ-1/ThiJ/PfpI superfamily, which is suggested to be involved in cellular protection against environmental stresses. In this study, flexible docking approach was employed to dock the ligand into the active site of PhpI. By analyzing the results, active site architecture and certain key residues responsible for substrate specificity were identified on the enzyme. Our docking result indicates that Glu12 plays an important role in substrate binding. The kinetic experiment conducted by Zhan shows that the E12T mutant is more stable than that of the wild-type. We also predict that Glu15, Lys43, and Tyr46 may be important in the catalytic efficiency and thermostability of enzyme. The new structural and mechanistic insights obtained from computational study should be valuable for detailed structures and mechanisms of the member of the DJ-1 superfamily.  相似文献   

14.
Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox‐active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox‐active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox‐active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox‐activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.  相似文献   

15.
Shimizu-Ibuka A  Matsuzawa H  Sakai H 《Biochemistry》2004,43(50):15737-15745
Previous crystallographic structural analysis of extended-spectrum beta-lactamase Toho-1 predicted that the high flexibility of beta-strand B3, the region that contains a conserved KTG motif and forms one wall of the substrate-binding site, could be one of the key features contributing to Toho-1 activity toward third-generation cephalosporins. To investigate whether this possible flexibility really affects the substrate profile of this enzyme, two Toho-1 mutants have been produced, G238C and G238C/G239in, in which the glycine residue at position 238 was replaced with a cysteine and an additional glycine residue was inserted. Our intent was to introduce a disulfide bond between the cysteine residues at positions 69 and 238, and thus to lock the position of beta-strand B3. The results of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) titration indicated formation of a new disulfide bridge in the G238C mutant, although disulfide bond formation was not confirmed in the G238C/G239in mutant. Kinetic analysis showed that the activity of the G238C mutant decreased drastically against third-generation cephalosporins, while its catalytic efficiency against penicillins and first-generation cephalosporins was almost identical to that of the wild-type enzyme. This result was consistent with the prediction that flexibility in beta-strand B3 was critical for activity against third-generation cephalosporins in Toho-1. Furthermore, we have determined the crystal structure of the G238C mutant enzyme to analyze the structural changes in detail. The structural model clearly shows the introduction of a new disulfide bridge and that there is no appreciable difference between the overall structures of the wild-type enzyme and the G238C mutant, although the introduced disulfide bond slightly influenced the positions of Ser237 on beta-strand B3 and Asn170 on the Omega loop. The results of our kinetic and structural analyses suggest that the flexibility of beta-strand B3, as well as the positions of Ser237 and the Omega loop, is critical for the substrate specificity expansion of Toho-1.  相似文献   

16.
Succinic semialdehyde dehydrogenase (SSADH) converts succinic semialdehyde (SSA) to succinic acid in the mitochondrial matrix and is involved in the metabolism of the inhibitory neurotransmitter γ‐aminobutyric acid (GABA). The molecular structure of human SSADH revealed the intrinsic regulatory mechanism—redox‐switch modulation—by which large conformational changes are brought about in the catalytic loop through disulfide bonding. The crystal structures revealed two SSADH conformations, and computational modeling of transformation between them can provide substantial insights into detailed dynamic redox modulation. On the basis of these two clear crystal structures, we modeled the conformational motion between these structures in silico. For that purpose, we proposed and used a geometry‐based coarse‐grained mathematical model of long‐range protein motion and the related modeling algorithm. The algorithm is based on solving the special optimization problem, which is similar to the classical Monge–Kantorovich mass transportation problem. The modeled transformation was supported by another morphing method based on a completely different framework. The result of the modeling facilitates better interpretation and understanding of the SSADH biological role. Proteins 2015; 83:2217–2229. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Recently Bekker et al. [Bekker G‐J et al. Protein Sci. 2019;28:429–438.] described a computational strategy of applying molecular‐dynamics simulations to estimate the relative stabilities of single‐domain antibodies, and utilized their method to design changes with the aim of increasing the stability of a single‐domain antibody with a known crystal structure. The structure from which they generated potentially stabilizing mutations is an anti‐cholera toxin single domain antibody selected from a naïve library which has relatively low thermal stability, reflected by a melting point of 48°C. Their work was purely theoretical, so to examine their predictions, we prepared the parental and predicted stabilizing mutant single domain antibodies and examined their thermal stability, ability to refold and affinity. We found that the mutation that improved stability the most (~7°C) was one which changed an amino acid in CDR1 from an asparagine to an aspartic acid. This change unfortunately was also accompanied by a reduction in affinity. Thus, while their modeling did appear to successfully predict stabilizing mutations, introducing mutations in the binding regions is problematic. Of further interest, the mutations selected via their high temperature simulations, did improve refolding, suggesting that they were successful in stabilizing the structure at high temperatures and thereby decrease aggregation. Our result should permit them to reassess and refine their model and may one day lead to a usefulin silico approach to protein stabilization.  相似文献   

18.
Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

20.
Here the functional and structural importance of interactions involving the 240s loop of the catalytic chain for the stabilization of the T state of aspartate transcarbamoylase were tested by replacement of Lys-244 with Asn and Ala. For the K244A and K244N mutant enzymes, the aspartate concentration required to achieve half-maximal specific activity was reduced to 8.4 and 4.0 mm, respectively, as compared with 12.4 mM for the wild-type enzyme. Both mutant enzymes exhibited dramatic reductions in homotropic cooperativity and the ability of the heterotropic effectors to modulate activity. Small angle x-ray scattering studies showed that the unligated structure of the mutant enzymes, and the structure of the mutant enzymes ligated with N-phosphonacetyl-L-aspartate, were similar to that observed for the unligated and N-phosphonacetyl-L-aspartateligated wild-type enzyme. A saturating concentration of carbamoyl phosphate alone has little influence on the small angle x-ray scattering of the wild-type enzyme. However, carbamoyl phosphate was able to shift the structure of the two mutant enzymes dramatically toward R, establishing that the mutations had destabilized the T state of the enzyme. The x-ray crystal structure of K244N enzyme showed that numerous local T state stabilizing interactions involving 240s loop residues were lost. Furthermore, the structure established that the mutation induced additional alterations at the subunit interfaces, the active site, the relative position of the domains of the catalytic chains, and the allosteric domain of the regulatory chains. Most of these changes reflect motions toward the R state structure. However, the K244N mutation alone only changes local conformations of the enzyme to an R-like structure, without triggering the quaternary structural transition. These results suggest that loss of cooperativity and reduction in heterotropic effects is due to the dramatic destabilization of the T state of the enzyme by this mutation in the 240s loop of the catalytic chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号