首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A combination of sequence homology analyses of mevalonate diphosphate decarboxylase (MDD) proteins and structural information for MDD leads to the hypothesis that Asp 302 and Lys 18 are active site residues in MDD. These residues were mutated to replace acidic/basic side chains and the mutant proteins were isolated and characterized. Binding and competitive displacement studies using trinitrophenyl-ATP, a fluorescent analog of substrate ATP, indicate that these mutant enzymes (D302A, D302N, K18M) retain the ability to stoichiometrically bind nucleotide triphosphates at the active site. These observations suggest the structural integrity of the mutant MDD proteins. The functional importance of mutated residues was evaluated by kinetic analysis. The 10(3) and 10(5)-fold decreases in k(cat) observed for the Asp 302 mutants (D302N and D302A, respectively) support assignment of a crucial catalytic role to Asp 302. A 30-fold decrease in activity and a 16-fold inflation of the K(m) for ATP is documented for the K18M mutant, indicating that Lys 18 influences the active site but is not crucial for reaction chemistry. Demonstration of the influence of conserved aspartate 302 appears to represent the first documentation of the functional importance of a residue in the MDD catalytic site and affords insight into phosphotransferase reactions catalyzed by a variety of enzymes in the galactokinase, homoserine kinase, mevalonate kinase, phosphom-evalonate kinase (GHMP kinase) family.  相似文献   

2.
Mevalonate diphosphate decarboxylase (MDD) catalyzes the ATP-dependent decarboxylation of mevalonate 5-diphosphate (MDP) to form isopentenyl pyrophosphate, a ubiquitous precursor for isoprenoid biosynthesis. MDD is a poorly understood component of this important metabolic pathway. Complementation of a temperature-sensitive yeast mutant by the putative mdd genes of Trypanosoma brucei and Staphylococcus aureus provides proof-of-function. Crystal structures of MDD from T. brucei (TbMDD, at 1.8 A resolution) and S. aureus (SaMDD, in two distinct crystal forms, each diffracting to 2.3 A resolution) have been determined. Gel-filtration chromatography and analytical ultracentrifugation experiments indicate that TbMDD is predominantly monomeric in solution while SaMDD is dimeric. The new crystal structures and comparison with that of the yeast Saccharomyces cerevisiae enzyme (ScMDD) reveal the structural basis for this variance in quaternary structure. The presence of an ordered sulfate in the structure of TbMDD reveals for the first time details of a ligand binding in the MDD active site and, in conjunction with well-ordered water molecules, comparisons with the related enzyme mevalonate kinase, structural and biochemical data derived on ScMDD and SaMDD, allows us to model a ternary complex with MDP and ATP. This model facilitates discussion of the molecular determinants of substrate recognition and contributions made by specific residues to the enzyme mechanism.  相似文献   

3.
Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg(2+)-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k(cat) decreased 10(3)- and 10(5)-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp(283) functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ("P-loop") provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.  相似文献   

4.
Mevalonate diphosphate decarboxylase (MDD) catalyzes the ATP-dependent decarboxylation of diphosphomevalonate (DPM) to produce isopentenyl diphosphate (IPP), the molecular “building block” for more than 25,000 distinct isoprenoids, including cholesterol, steroid hormones and terpenoids. Here, we present the first backbone assignment of Streptococcus pneumoniae MDD in the unliganded state and in a ternary complex with DPM and AMPPCP––a nucleotide analogue unable to transfer the γ-phosphoryl group. The secondary chemical shifts for the unliganded form are in good agreement with the crystal structure of Streptococcus pyogenes (~70% sequence identity). The addition of substrate and nucleotide to the enzyme results in chemical shift changes of cross peaks that correspond to residues in the binding pocket.  相似文献   

5.
Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase.  相似文献   

6.
Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme''s potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway.  相似文献   

7.
Summary The activities of the mevalonate metabolizing enzymes-HMG-CoA reductase, mevalonate kinase, mevalonate phosphokinase and mevalonate pyrophosphate decarboxylase -were assayed with the respective substrates in green seedlings of Arachis hypogaea. MVAPP decarboxylase is the rate-limiting step among these enzymes and is inhibited by phenolic acids. Its activity in the seedlings was found to decrease in the absence of light and on treatment with abscisic acid. These results suggest that regulation of isoprene pathway in groundnut seedlings may occur at the level of mevalonate decarboxylation.Abbreviations HMG CoA 3-hydroxy-3-methyl-glutaryl coenzyme A - MVA Mevalonate - MVAP Mevalonate-5-phosphate - MVAPP Mevalonate-5-pyrophosphate - DTT Dithiothreitol - ABA Abscisic Acid  相似文献   

8.
Mevalonate 5-diphosphate decarboxylase (MDD) is a peroxisomal enzyme in the cholesterol biosynthetic pathway, which plays an important role in regulating cholesterol biosynthesis. In the present study, rat MDD was cloned and purified to apparent homogeneity. Two fluorinated MDD substrate analogs, P'-geranyl 2-fluoromevalonate 5-diphosphate (4) and 2-fluoromevalonate 5-diphosphate (6), were synthesized, and both were found to be irreversible inhibitors of rat MDD. These two inhibitors were characterized, and mechanisms of the inactivation process were proposed. Kinetic studies indicate both analogs only bind into mevalonate binding-site of MDD. Compound 4 shows competitive inhibition on mevalonate kinase (MVK), and its IC(50) value was determined to be comparable with that of geranyl diphosphate. Further kinetic studies indicate compound 4 only bind into ATP binding-site of MVK. These studies provide an example for a single inhibitor to carry out sequential blocking of two enzymes in cholesterol biosynthesis, which may provide useful information for drug discovery for the purpose of treating cardiovascular disease and cancer or for pest control.  相似文献   

9.
J E Reardon  R H Abeles 《Biochemistry》1987,26(15):4717-4722
The conversion of mevalonate to cholesterol in rat liver homogenates (IC50 = 0.01-1.0 mM) is inhibited by 6- (I), 6,6-di- (II), and 6,6,6-trifluoromevalonate (III), as well as 4,4-difluoromevalonate (IV). Addition of compound I, III, or IV to rat liver homogenates results in the accumulation of 5-phospho- and 5-pyrophosphomevalonate. The conversion of isopentenyl pyrophosphate to cholesterol is not inhibited by the fluorinated analogues. It thus appears likely that the decarboxylation of mevalonate 5-pyrophosphate is inhibited. Rat liver homogenates catalyze the phosphorylation of I and III. The inhibition of the decarboxylation of mevalonate 5-pyrophosphate by I and III was demonstrated directly with partially purified decarboxylase. Compound I is a remarkably effective inhibitor of the decarboxylation (Ki = 10 nM). Similar results were reported by Nave et al. [Nave, J. F., d'Orchymont, H., Ducep, J. B., Piriou F., & Jung, M. J. (1985) Biochem. J. 227, 247]. It is likely that the phosphorylated or pyrophosphorylated forms of all inhibitors tested are responsible for inhibition. We also describe a chemical method for the synthesis of mevalonate 5-pyrophosphate.  相似文献   

10.
11.
Phenylalanine, phenylpyruvate and phenylacetate produced a considerable inhibition of chick liver mevalonate 5-pyrophosphate decarboxylase while mevalonate kinase and mevalonate 5-phosphate kinase were not significantly affected. Phenolic derivatives of phenylalanine produced a similar inhibition of decarboxylase activity than that found in the presence of phenyl metabolites. The degree of inhibition was progressive with increasing concentrations of inhibitors (1.25–5.00 mM). Simultaneous supplementation of different metabolites in conditions similar to those in experimental phenylketonuria (0.25 mM each) produced a clear inhibition of liver decarboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. To our knowledge, this is the first report on the in vitro inhibition of both liver regulatory enzymes of cholesterogenesis in phenylketonuria-like conditions. Our results show a lower inhibition of decarboxylase than that of reductase but suggest an important regulatory role of decarboxylase in cholesterol synthesis.  相似文献   

12.
The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of β‐phenylethylamine. Kinetics of tyramine and β‐phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine‐enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to β‐phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2‐DE and MALDI‐TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and β‐phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down‐regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy‐supplying routes. The most interesting finding is a membrane‐bound TDC highly over‐expressed during amine production. This is the first evidence of a true membrane‐bound TDC, longly suspected in bacteria on the basis of the gene sequence.  相似文献   

13.
Expression in Escherichia coli of his-tagged human mevalonate diphosphate decarboxylase (hMDD) has expedited enzyme isolation, characterization, functional investigation of the mevalonate diphosphate binding site, and crystal structure determination (2.4 Å resolution). hMDD exhibits Vmax = 6.1 ± 0.5 U/mg; Km for ATP is 0.69 ± 0.07 mM and Km for (R,S) mevalonate diphosphate is 28.9 ± 3.3 μM. Conserved polar residues predicted to be in the hMDD active site were mutated to test functional importance. R161Q exhibits a ∼1000-fold diminution in specific activity, while binding the fluorescent substrate analog, TNP-ATP, comparably to wild-type enzyme. Diphosphoglycolyl proline (Ki = 2.3 ± 0.3 uM) and 6-fluoromevalonate 5-diphosphate (Ki = 62 ± 5 nM) are competitive inhibitors with respect to mevalonate diphosphate. N17A exhibits a Vmax = 0.25 ± 0.02 U/mg and a 15-fold inflation in Km for mevalonate diphosphate. N17A’s Ki values for diphosphoglycolyl proline and fluoromevalonate diphosphate are inflated (>70-fold and 40-fold, respectively) in comparison with wild-type enzyme. hMDD structure indicates the proximity (2.8 Å) between R161 and N17, which are located in an interior pocket of the active site cleft. The data suggest the functional importance of R161 and N17 in the binding and orientation of mevalonate diphosphate.  相似文献   

14.
Methionine γ‐lyse (MGL) catalyzes the α, γ‐elimination of l ‐methionine and its derivatives as well as the α, β‐elimination of l ‐cysteine and its derivatives to produce α‐keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site‐directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51–Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5′‐phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate‐assisted catalysis.  相似文献   

15.
3‐Hydroxy‐3‐methylglutaryl‐coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild‐type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up‐regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10‐fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE‐S359A over OE‐wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA‐derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)‐derived α‐tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS‐OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up‐regulated. In OE‐S359A tomato fruits, increased squalene and phytosterol contents over OE‐wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE‐wtBjHMGS1 and OE‐S359A fruits, the up‐regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α‐tocopherol and carotenoid accumulation indicated cross‐talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health‐promoting squalene, phytosterols, α‐tocopherol and carotenoids in tomato, an edible fruit.  相似文献   

16.
【目的】确定蛹虫草甲羟戊酸途径中的2个关键酶——磷酸甲羟戊酸激酶(CmErg8)和焦磷酸甲羟戊酸脱羧酶(CmErg19)的功能及其对麦角甾醇和虫草素含量的影响。【方法】通过生物信息学分析鉴定蛹虫草中CmErg8和CmErg19,并采用酵母互补确定其功能是否保守;以蛹虫草尿嘧啶营养缺陷型CmΔpyrG为背景菌株,利用农杆菌介导的转化方法对CmErg8和CmErg19进行过表达,观察其对麦角甾醇和虫草素含量的影响。【结果】CmErg8和CmErg19不能互补酵母erg8和erg19突变体的温度敏感表型;CmErg8和CmErg19过表达菌株中麦角甾醇和虫草素含量均有所增加,特别是CmErg19基因过表达可以使虫草素含量提升5倍左右。【结论】本研究揭示了蛹虫草CmErg8和CmErg19的功能,并且发现蛹虫草麦角甾醇合成通路基因可能会影响虫草素含量。  相似文献   

17.
Sequence comparison with the mevalonate diphosphate decarboxylase (MVD) amino acid sequence of Saccharomyces cerevisiae identified an EST clone corresponding to a cDNA that may encode Arabidopsis thaliana MVD (AtMVD1). This enzyme catalyses the synthesis of isopentenyl diphosphate, the building block of sterol and isoprenoid biosynthesis, and uses mevalonate diphosphate as a substrate. Sequencing of the full-length cDNA was performed. The predicted amino acid sequence presents about 55% identity with the yeast, human and rat MVDs. The sequence of the genomic region of A. thaliana MVD was also obtained and Southern blot analysis on genomic DNA showed that A. thaliana could have at least one homologous MVD gene. In order to allow heterologous expression in S. cerevisiae, the MVD open reading frame (ORF) was then cloned under the control of the yeast PMA1 strong promoter. When expressed in yeast, the A. thaliana cDNA complemented both the thermosensitive MN19-34 strain deficient in MVD, and the lethal phenotype of an ERG19 deleted strain. However, the wild-type sterol content was not fully restored suggesting that the A. thaliana MVD activity may not be optimal in yeast. A two-hybrid assay was also performed to evaluate homodimer formation of the A. thaliana MVD and heterodimer formation between the plant and yeast heterologous enzymes.  相似文献   

18.
Lysine decarboxylase converts l ‐lysine to cadaverine as a branching point for the biosynthesis of plant Lys‐derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys‐derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La‐L/ODC) and identified cadaverine‐derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys‐derived alkaloids in the transgenic lines. Moreover, we found several cadaverine‐derived metabolites specifically detected in the transgenic lines compared with the non‐transformed control. Among these, three specific metabolites were identified and confirmed as 5‐aminopentanal, 5‐aminopentanoate and δ‐valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope‐labeled [α‐15N]‐ or [ε‐15N]‐l ‐lysine. Our results show similar 15N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys‐derived alkaloid biosynthesis.  相似文献   

19.
Mevalonate 5-diphosphate decarboxylase (MVD) is an important enzyme in the mevalonate pathway catalyzing the ATP-dependent decarboxylation of mevalonate 5-diphosphate (MDP) to yield isopentynyl diphosphate (IPP) which is an ubiquitous precursor for isoprenoids and sterols. Although there are studies to show the involvement of certain amino acid residues in MVD activity, the structure and the function of the active site is yet to be investigated. Therefore the objectives of this study were to elucidate the active site of Saccharomyces cerevisiae MVD (scMVD) using a molecular docking and simulation-based approach. The Cartesian coordinates of scMVD retrieved from the PDB database were used in the docking procedure. 3D atomic coordinates of MDP, ATP and an inhibitor trifluoromevalonate (TFMDP) were generated using Gaussian 98. ATP, MDP and TFMDP were docked into the potential active site identified by sequence analyses using Hex 4.2. The complexes obtained from docking procedure were subjected to 1.5 ns simulation by GROMACS 3.2. Investigation of complexes revealed that Ala15, Lys18, Ser121 &; Ser155; Lys22, Ser153 &; Ser155 and Tyr19, Ser121, Ser153, Gly154 &; Thr209 of MVD are within hydrogen bond forming distances of MDP, ATP and TFMDP, respectively indicating their possible involvement in active site formation through H-bond formation. The presence of a water molecule between the carboxyl group of Asp302, a previously characterized active site residue and C3 region of MDP at a distance of 3 Å suggests that deprotonation of the hydroxyl of the C3 takes place via a water molecule. Conjunction with reported crucial catalytic activity of Ser121 of MVD and our finding of the presence of this residue in hydrogen bond forming distance to MDP suggests that this hydrogen bond helps in proper orienting of MDP for phosphorylation /decarboxylation. We further suggest that the reported greater RMS deviation of Pro79- Leu mutated MVD with respect to native MVD of temperature sensitive mutant phenotype of S. cerevisiae is due to partial unfolding of MVD as a result of mutation. Finally, this study provides a tantalizing glimpse about hitherto unknown structural and functional properties of the active site of MVD.  相似文献   

20.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号