首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Elisa Fadda 《Biophysical journal》2013,104(11):2503-2511
XPA is an essential protein in the nucleotide excision repair (NER) pathway, in charge of recruiting the ERCC1-XPF endonuclease complex to the DNA damage site. The only currently available structural insight into the binding of XPA to ERCC1 derives from the solution NMR structure of a complex between the ERCC1 central fragment and a 14-residue peptide, corresponding to the highly conserved binding motif of the XPA N-terminus, XPA67-80. The extensive all-atom molecular-dynamics simulation study of the XPA67-80 peptide both bound to the ERCC1 central fragment and free in solution presented here completes the profile of the structural determinants responsible for the ERCC1/XPA67-80 complex stability. In addition to the wild-type, this study also looks at specific XPA67-80 mutants in complex with the ERCC1 central domain and thus contributes to defining the conformational determinants for binding, as well as all of the essential structural elements necessary for the rational design of an XPA-based, ERCC1-specific inhibitor.  相似文献   

2.
Nucleotide excision repair (NER) in higher organisms repair massive DNA abrasions caused by ultraviolet rays, and various mutagens, where Xeroderma pigmentosum group A (XPA) protein is known to be involved in damage recognition step. Any mutations in XPA cause classical Xeroderma pigmentosum disease. The extent to which XPA is required in the NER is still unclear. Here, we present the comparative study on the structural and conformational changes in globular DNA binding domain of XPA98–210 in DNA bound and DNA free state. Atomistic molecular dynamics simulation was carried out for both XPA98–210 systems using AMBER force fields. We observed that XPA98–210 in presence of damaged DNA exhibited more structural changes compared to XPA98–210 in its free form. When XPA is in contact with DNA, we found marked stability of the complex due to the formation of characteristic longer antiparallel β-sheets consisting mainly lysine residues.  相似文献   

3.
The Xeroderma pigmentosum complementation group A (XPA) protein functions as a primary damage verifier and as a scaffold protein in nucleotide excision repair (NER) in all higher organisms. New evidence of XPA’s existence as a dimer and the redefinition of its DNA-binding domain (DBD) raises new questions regarding the stability and functional position of XPA in NER. Here, we have investigated XPA’s dimeric status with respect to its previously defined DBD (XPA98-219) as well as with its redefined DBD (XPA98-239). We studied the stability of XPA98-210 and XPA98-239 homo-dimer systems using all-atom molecular dynamics simulation, and we have also characterized the protein–protein interactions (PPI) of these two homo-dimeric forms of XPA. After conducting the root mean square deviation (RMSD) analyses, it was observed that the XPA98-239 homo-dimer has better stability than XPA98-210. It was also found that XPA98-239 has a larger number of hydrogen bonds, salt bridges, and hydrophobic interactions than the XPA98-210 homo-dimer. We further found that Lys, Glu, Gln, Asn, and Arg residues shared the major contribution toward the intermolecular interactions in XPA homo-dimers. The binding free energy (BFE) analysis, which used the molecular mechanics Poisson–Boltzmann method (MM-PBSA) and the generalized Born and surface area continuum solvation model (GBSA) for both XPA homo-dimers, also substantiated the positive result in favor of the stability of the XPA98-239 homo-dimer.

Communicated by Ramaswamy H. Sarma  相似文献   


4.
Earlier immunological experiments with a synthetic 36‐residue peptide (75‐110) from Influenza hemagglutinin have been shown to elicit anti‐peptide antibodies (Ab) which could cross‐react with the parent protein. In this article, we have studied the conformational features of a short antigenic (Ag) peptide (98YPYDVPDYASLRS110) from Influenza hemagglutinin in its free and antibody (Ab) bound forms with molecular dynamics simulations using GROMACS package and OPLS‐AA/L all‐atom force field at two different temperatures (293 K and 310 K). Multiple simulations for the free Ag peptide show sampling of ordered conformations and suggest different conformational preferences of the peptide at the two temperatures. The free Ag samples a conformation crucial for Ab binding (β‐turn formed by “DYAS” sequence) with greater preference at 310 K while, it samples a native‐like conformation with relatively greater propensity at 293 K. The sequence “DYAS” samples β‐turn conformation with greater propensity at 310 K as part of the hemagglutinin protein also. The bound Ag too samples the β‐turn involving “DYAS” sequence and in addition it also samples a β‐turn formed by the sequence “YPYD” at its N‐terminus, which seems to be induced upon binding to the Ab. Further, the bound Ag displays conformational flexibility at both 293 K and 310 K, particularly at terminal residues. The implications of these results for peptide immunogenicity and Ag–Ab recognition are discussed. Proteins 2015; 83:1352–1367. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate‐free) and camphor‐soaked forms have open conformations. Furthermore, two other potential camphor‐binding sites were also identified from electron densities in the camphor‐soaked structure, one being located in the access channel and the other in a cavity on the surface near the F‐helix side of the F‐G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor‐bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor‐bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit.  相似文献   

6.
Among different ligand binding motifs, anion binding CαNN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with CαNN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping CαNN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion.  相似文献   

7.
Proteases are prototypes of multispecific protein–protein interfaces. Proteases recognize and cleave protein and peptide substrates at a well‐defined position in a substrate binding groove and a plethora of experimental techniques provide insights into their substrate recognition. We investigate the caspase family of cysteine proteases playing a key role in programmed cell death and inflammation, turning caspases into interesting drug targets. Specific ligand binding to one particular caspase is difficult to achieve, as substrate specificities of caspase isoforms are highly similar. In an effort to rationalize substrate specificity of two closely related caspases, we investigate the substrate promiscuity of the effector Caspases 3 and 7 by data mining (cleavage entropy) and by molecular dynamics simulations. We find a strong correlation between binding site rigidity and substrate readout for individual caspase subpockets explaining more stringent substrate readout of Caspase 7 via its narrower conformational space. Caspase 3 subpockets S3 and S4 show elevated local flexibility explaining the more unspecific substrate readout of that isoform in comparison to Caspase 7. We show by in silico exchange mutations in the S3 pocket of the proteases that a proline residue in Caspase 7 contributes to the narrowed conformational space of the binding site. These findings explain the substrate specificities of caspases via a mechanism of conformational selection and highlight the crucial importance of binding site local dynamics in substrate recognition of proteases. Proteins 2014; 82:546–555. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Yu Zhou  Chao Wu  Lifeng Zhao  Niu Huang 《Proteins》2014,82(10):2412-2428
Hemagglutinin (HA) mediates the membrane fusion process of influenza virus through its pH‐induced conformational change. However, it remains challenging to study its structure reorganization pathways in atomic details. Here, we first applied continuous constant pH molecular dynamics approach to predict the pKa values of titratable residues in H2 subtype HA. The calculated net‐charges in HA1 globular heads increase from 0e (pH 7.5) to +14e (pH 4.5), indicating that the charge repulsion drives the detrimerization of HA globular domains. In HA2 stem regions, critical pH sensors, such as Glu1032, His181, and Glu891, are identified to facilitate the essential structural reorganizations in the fusing pathways, including fusion peptide release and interhelical loop transition. To probe the contribution of identified pH sensors and unveil the early steps of pH‐induced conformational change, we carried out conventional molecular dynamics simulations in explicit water with determined protonation state for each titratable residue in different environmental pH conditions. Particularly, energy barriers involving previously uncharacterized hydrogen bonds and hydrophobic interactions are identified in the fusion peptide release pathway. Nevertheless, comprehensive comparisons across HA family members indicate that different HA subtypes might employ diverse pH sensor groups along with different fusion pathways. Finally, we explored the fusion inhibition mechanism of antibody CR6261 and small molecular inhibitor TBHQ, and discovered a novel druggable pocket in H2 and H5 subtypes. Our results provide the underlying mechanism for the pH‐driven conformational changes and also novel insight for anti‐flu drug development. Proteins 2014; 82:2412–2428. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1‐Cul1‐F‐box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S‐phase kinase‐associated protein 2 (Skp2), cullin, and RING‐finger proteins of this complex, but the roles of the adapter protein Skp1 and F‐box domain of Skp2 have not been determined. Using sub‐microsecond molecular dynamics simulations of full‐length Skp1, unbound Skp2, Skp2‐Cks1 (Cks1: Cyclin‐dependent kinases regulatory subunit 1), Skp1‐Skp2, and Skp1‐Skp2‐Cks1 complexes, we have elucidated the function of Skp1 and the F‐box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X‐ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C‐terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F‐box proteins. Furthermore, we observed that the F‐box domain could rotate (5°–129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1‐Skp2 and Skp1‐Skp2‐Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F‐box domain of Skp2 and Skp1‐Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. Proteins 2016; 84:159–171. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Nodal, a member of the TGF‐β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF‐βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co‐receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44–67 of the Nodal protein, corresponding to the pre‐helix loop and the H3 helix, and reproduce the wild‐type sequence or bear some modifications to evaluate the hot‐spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Lin Shen  Hua Wan 《Biopolymers》2015,103(10):597-608
Botulinum neurotoxins (BoNTs) are known as the most toxic natural substances. Synaptic vesicle protein 2 (SV2) has been proposed to be a protein receptor for BoNT/A. Recently, two short peptides (BoNT/A‐A2 and SV2C‐A3) were designed to inhibit complex formation between the BoNT/A receptor‐binding domain (BoNT/A‐RBD) and the synaptic vesicle protein 2C luminal domain (SV2C‐LD). In this article, the two peptide complex systems are studied by molecular dynamics (MD) simulations. The structural stability analysis indicates that BoNT/A‐A2 system is more stable than SV2C‐A3 system. The conformational analysis implies that the β‐sheet in BoNT/A‐A2 system maintains its secondary structure but the two β‐strands in SV2C‐A3 system have remarkable conformational changes. Based on the calculation of hydrogen bonds, hydrophobic interactions and cation‐π interactions, it is found that the internal hydrogen bonds play crucial roles in the structural stability of the peptides. Because of the stable secondary structure, the β‐sheet in BoNT/A‐A2 system establishes effective interactions at the interface and inhibits BoNT/A‐RBD binding to SV2C‐LD. In contrast, without other β‐strands forming internal hydrogen bonds, the two isolated β‐strands in SV2C‐A3 system become the random coil. This conformational change breaks important hydrogen bonds and weakens cation‐π interaction in the interface, so the complex formation is only partially inhibited by the two β‐strands. These results are consistent with experimental studies and may be helpful in understanding the inhibition mechanisms of peptide inhibitors. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 597–608, 2015.  相似文献   

12.
Here I discuss findings that suggest a universal mechanism for proteins (and RNA) to recognize and interact with various binding partners by selectively binding to different conformations that pre‐exist in the free protein's conformational ensemble. The tandem RNA recognition motif domains of splicing factor U2AF65 fluctuate in solution between a predominately closed conformation in which the RNA binding site of one of the domains is blocked, and a lowly populated open conformation in which both RNA binding pockets are accessible. RNA binding to U2AF65 may thus occur through the weakly populated open conformation, and the binding interaction stabilizes the open conformation. The conformational diversity observed in U2AF65 might also facilitate binding to diverse RNA sequences as found in the polypyrimidine tracts that help define 3′ splice sites. Similar binding pathways in other systems have important consequences in biological regulation, molecular evolution, and information storage.  相似文献   

13.
14.
The PDZ domains, a large family of peptide recognition proteins, bind to the C‐terminal segment of membrane ion channels and receptors thereby mediating their localization. The peptide binding process is not known in detail and seems to differ among different PDZ domains. For the third PDZ domain of the synaptic protein PSD‐95 (PDZ3), a lock‐and‐key mechanism was postulated on the basis of the almost perfect overlap of the crystal structures in the presence and absence of its peptide ligand. Here, peptide binding to PDZ3 is investigated by explicit solvent molecular dynamics (MD) simulations (for a total of 1.3 μs) and the cut‐based free energy profile method for determining free energy barriers and basins. The free energy landscape of apo PDZ3 indicates that there are multiple basins within the native state. These basins differ by the relative orientation of the α2 helix and β2 strand, the two secondary structure elements that make up the peptide binding site. Only the structure with the smallest aperture of the binding site is populated in the MD simulations of the complex whose analysis reveals that the peptide ligand binds to PDZ3 by selecting one of three conformations. Thus, the dynamical information obtained by the atomistic simulations increment the static, that is, partial, picture of the PDZ3 binding mechanism based on the X‐ray crystallography data. Importantly, the simulation results show for the first time that conformational selection is a possible mechanism of peptide binding by PDZ domains in general. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
4‐Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the second reaction in the tyrosine catabolism and is linked to the production of cofactors plastoquinone and tocopherol in plants. This important biological role has put HPPD in the focus of current herbicide design efforts including the development of herbicide‐tolerant mutants. However, the molecular mechanisms of substrate binding and herbicide tolerance have yet to be elucidated. In this work, we performed molecular dynamics simulations and free energy calculations to characterize active site gating by the C‐terminal helix H11 in HPPD. We compared gating equilibria in Arabidopsis thaliana (At) and Zea mays (Zm) wild‐type proteins retrieving the experimentally observed preferred orientations from the simulations. We investigated the influence of substrate and product binding on the open–closed transition and discovered a ligand‐mediated conformational switch in H11 that mediates rapid substrate access followed by active site closing and efficient product release through H11 opening. We further studied H11 gating in At mutant HPPD, and found large differences with correlation to experimentally measured herbicide tolerance. The computational findings were then used to design a new At mutant HPPD protein that showed increased tolerance to six commercially available HPPD inhibitors in biochemical in vitro experiments. Our results underline the importance of protein flexibility and conformational transitions in substrate recognition and enzyme inhibition by herbicides.  相似文献   

16.
Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2), its compelling limitations to anti‐venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on VRV‐PL‐V (Vipera russellii venom phospholipase A2 fraction—V) belonging to Group II‐B secretory PLA2 from Daboia russelli pulchella is carried out in order to study the structure‐based inhibitor design. The accuracy of the model was validated using multiple computational approaches. The molecular docking study of this protein was undertaken using different classes of experimentally proven, structurally diverse synthetic inhibitors of secretory PLA2 whose selection is based on IC50 value that ranges from 25 μM to 100 μM. Estimation of protein–ligand contacts by docking analysis sheds light on the importance of His 47 and Asp 48 within the VRV‐PL‐V binding pocket as key residue for hydrogen bond interaction with ligands. Our virtual analysis revealed that compounds with different scaffold binds to the same active site region. ADME analysis was also further performed to filter and identify the best potential specific inhibitor against VRV‐PL‐V. Additionally, the e‐pharmacophore was generated for the best potential specific inhibitor against VRV‐PL‐V and reported here. The present study should therefore play a guiding role in the experimental design of VRV‐PL‐V inhibitors that may provide better therapeutic molecular models for PLA2 recognition and anti‐ophidian activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Sarco(endo)plasmic reticulum Ca2+‐ATPase transports two Ca2+ per ATP‐hydrolyzed across biological membranes against a large concentration gradient by undergoing large conformational changes. Structural studies with X‐ray crystallography revealed functional roles of coupled motions between the cytoplasmic domains and the transmembrane helices in individual reaction steps. Here, we employed “Motion Tree (MT),” a tree diagram that describes a conformational change between two structures, and applied it to representative Ca2+‐ATPase structures. MT provides information of coupled rigid‐body motions of the ATPase in individual reaction steps. Fourteen rigid structural units, “common rigid domains (CRDs)” are identified from seven MTs throughout the whole enzymatic reaction cycle. CRDs likely act as not only the structural units, but also the functional units. Some of the functional importance has been newly revealed by the analysis. Stability of each CRD is examined on the morphing trajectories that cover seven conformational transitions. We confirmed that the large conformational changes are realized by the motions only in the flexible regions that connect CRDs. The Ca2+‐ATPase efficiently utilizes its intrinsic flexibility and rigidity to response different switches like ligand binding/dissociation or ATP hydrolysis. The analysis detects functional motions without extensive biological knowledge of experts, suggesting its general applicability to domain movements in other membrane proteins to deepen the understanding of protein structure and function. Proteins 2015; 83:746–756. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram‐negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance‐based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd) of 58 nm . This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Peroxisomes entirely rely on the import of their proteome across the peroxisomal membrane. Recognition efficiencies of peroxisomal proteins vary by more than 1000‐fold, but the molecular rationale behind their subsequent differential import and sorting has remained enigmatic. Using the protein cargo alanine‐glyoxylate aminotransferase as a model, an unexpected increase from 34 to 80% in peroxisomal import efficiency of a single‐residue mutant has been discovered. By high‐resolution structural analysis, we found that it is the recognition receptor PEX5 that adapts its conformation for high‐affinity binding rather than the cargo protein signal motif as previously thought. During receptor recognition, the binding cavity of the receptor shrinks to one third of its original volume. This process is impeded in the wild‐type protein cargo because of a bulky side chain within the recognition motif, which blocks contraction of the PEX5 binding cavity. Our data provide a new insight into direct protein import efficiency by removal rather than by addition of an apparent specific sequence signature that is generally applicable to peroxisomal matrix proteins and to other receptor recognition processes.   相似文献   

20.
Heparin is a key player in cell signaling via its physical interactions with protein targets in the extracellular matrix. However, basic molecular level understanding of these highly biologically relevant intermolecular interactions is still incomplete. In this study, for the first time, microsecond-scale MD simulations are reported for a complex between fibroblast growth factor 1 and heparin. We rigorously analyze this molecular system in terms of the conformational space, structural, energetic, and dynamic characteristics. We reveal that the conformational selection mechanism of binding denotes a recognition specificity determinant. We conclude that the length of the simulation could be crucial for evaluation of some of the analyzed parameters. Our data provide novel significant insights into the interactions in the fibroblast growth factor 1 complex with heparin, in particular, and into the physical-chemical nature of protein-glycosaminoglycan systems in general, which have potential applicability for biomaterials development in the area of regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号