首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe–4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to −500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe–4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

2.
3.
Paracoccus pantotrophus expresses two nitrate reductases—membrane bound nitrate reductase (Nar) and periplasmic nitrate reductase (Nap). In growth experiments with two denitrifying species (Paracoccus pantotrophus and Alcaligenes eutrophus) that have both Nap and Nar and two species (Pseudomonas denitrificans and Pseudomonas fluorescens) with Nar only, it was found that diauxic lag is shorter for bacteria that express Nap. In P. pantotrophus, napEDABC encodes the periplasmic nitrate reductase. To analyze the effect of Nap on diauxic lag, the nap operon was deleted from P. pantotrophus. The growth experiments with nap? mutant resulted in increased diauxic lag when switched from aerobic to anoxic respiration, suggesting Nap is responsible for shorter lags and helps in adaptation to anoxic metabolism after transition from aerobic conditions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
The complete assimilatory nitrate reductase (NR) gene from the pennate diatom Phaeodactylum triconutum Bohlin was sequenced from cDNA and compared with NR sequences from fungi, green algae, vascular plants, and the recently sequenced genome of the centric diatom Thalassiosira pseudonana Hasle and Heimdal CCMP1335. In all the major eukaryotic nitrate reductase (Euk‐NR) functional domains, diatom NR gene sequences are generally 50%–60% identical to plant and alga sequences at the amino acid level. In the less conserved N‐terminal, hinge 1, and hinge 2 regions, homology to other NR sequences is weak, generally<30%. Two PCR primer sets capable of amplifying Euk‐NR from plants, algae, and diatoms were designed. One primer set was used to amplify a 750‐base pair (bp) NR fragment from the cDNA of five additional diatom strains. The PCR amplicon spans part of the well‐conserved dimer interface region, the more variable hinge 1 region, and part of the conserved cytochrome b heme binding region. The second primer set, targeted to the dimer region, was used to amplify an approximately 400‐bp fragment of the NR gene from DNA samples collected in Monterey Bay, California and in central New Jersey inner continental shelf (LEO‐15 site) waters. Only diatom‐like NR sequences were recovered from Monterey Bay samples, whereas LEO‐15 samples yielded NR sequences from a range of photosynthetic eukaryotes. The prospect of using DNA‐ and RNA‐based methods to target the NR genes of diatoms specifically is a promising approach for future physiological and ecological experiments.  相似文献   

5.
6.
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on theE. coli chromosome. ThenarGHJI operon, encoding nitrate reductaseA, is located in thechlC locus at 27 minutes, along with several functionally related genes:narK, encoding a nitrate/nitrite antiporter, and thenarXL operon, encoding a nitrate-activated, two component regulatory system. ThenarZYWV operon, encoding nitrate reductase Z, is located in thechlZ locus located at 32.5 minutes, a region which includes anarK homologue,narU, but no apparent homologue to thenarXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both thenarGHJI operon and thenarK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while thenarZYWV operon and thenarU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase inE. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.Abbreviations NR nitrate reductase On leave from Department of Biochemistry and Molecular Biology, The University of Texas Medical school at Houston, Houston, Texas, 77225, USA  相似文献   

7.
8.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

9.
Ferric reductase enzymes requiring a reductant for maximal activity were purified from the cytoplasmic and periplasmic fractions of avirulent and virulent Legionella pneumophila. The cytoplasmic and periplasmic enzymes are inhibited by zinc sulfate, constitutive and active under aerobic or anaerobic conditions. However, the periplasmic and cytoplasmic reductases are two distinct enzymes as shown by their molecular weights, specific activities, reductant specificities and other characteristics. The molecular weights of the cytoplasmic and periplasmic ferric reductases are approximately 38 and 25 kDa, respectively. The periplasmic reductase (K m = 7.0 m) has a greater specific activity and twice the affinity for ferric citrate as the cytoplasmic enzyme (K m = 15.3 m). Glutathione serves as the optimum reductant for the periplasmic reductase, but is inactive for the cytoplasmic enzyme. In contrast, NADPH is the optimum reductant for the cytoplasmic enzyme. Ferric reductases of avirulent cells show a 2-fold increase in their activities when NADPH is used as a reductant in comparison with NADH. In contrast, ferric reductases from virulent cells demonstrated an equivalent activity with NADH or NADPH as reductants. With the exception of their response to NADPH, the ferric reductase at each respective location appears to be similar for avirulent and virulent cells.  相似文献   

10.
11.
Nitrate reductases (NRs) are enzymes that catalyze reduction of nitrate to nitrite using a molybdenum cofactor. In an alternative reaction, plant NRs have also been shown to catalyze reduction of nitrite to nitric oxide, and this appears to be a major source of nitric oxide synthesis in plants, although other pathways have also been shown. Here, density functional theory (DFT) results are shown, indicating that although nitrate is thermodynamically the preferred substrate for the NR active site, both nitrite and nitrate are easily reduced to nitrite and NO, respectively. These mechanisms require a Mo(IV) state. Additionally, in the case of the nitrite, linkage isomerism is at work and controlled by the metal oxidation state, and reduction is, unlike in the nitrate case, dependent on protonation. The data may be relevant to other molybdenum enzymes with similar active sites, such as xanthine oxidase.  相似文献   

12.
Since the recognition of iron‐limited high nitrate (or nutrient) low chlorophyll (HNLC) regions of the ocean, low iron availability has been hypothesized to limit the assimilation of nitrate by diatoms. To determine the influence of non‐steady‐state iron availability on nitrogen assimilatory enzymes, cultures of Thalassiosira weissflogii (Grunow) Fryxell et Hasle were grown under iron‐limited and iron‐replete conditions using artificial seawater medium. Iron‐limited cultures suffered from decreased efficiency of PSII as indicated by the DCMU‐induced variable fluorescence signal (Fv/Fm). Under iron‐replete conditions, in vitro nitrate reductase (NR) activity was rate limiting to nitrogen assimilation and in vitro nitrite reductase (NiR) activity was 50‐fold higher. Under iron limitation, cultures excreted up to 100 fmol NO2?·cell?1·d?1 (about 10% of incorporated N) and NiR activities declined by 50‐fold while internal NO2? pools remained relatively constant. Activities of both NR and NiR remained in excess of nitrogen incorporation rates throughout iron‐limited growth. One possible explanation is that the supply of photosynthetically derived reductant to NiR may be responsible for the limitation of nitrogen assimilation at the NO2? reduction step. Urease activity showed no response to iron limitation. Carbon:nitrogen ratios were equivalent in both iron conditions, indicating that, relative to carbon, nitrogen was assimilated at similar rates whether iron was limiting growth or not. We hypothesize that, diatoms in HNLC regions are not deficient in their ability to assimilate nitrate when they are iron limited. Rather, it appears that diatoms are limited in their ability to process photons within the photosynthetic electron transport chain which results in nitrite reduction becoming the rate‐limiting step in nitrogenassimilation.  相似文献   

13.
Burley tobaccos (Nicotiana tabacum) display a nitrogen‐use‐deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco‐specific nitrosamines (TSNAs). Two TSNA species, 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone (NNK) and N‐nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen‐assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field‐grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well‐documented animal carcinogens found in tobacco products.  相似文献   

14.
Diatoms, but not flagellates, have been shown to increase rates of nitrogen release after a shift from a low growth irradiance to a much higher experimental irradiance. We compared NO3 ? uptake kinetics, internal inorganic nitrogen storage, and the temperature dependence of the NO3 ? reduction enzymes, nitrate (NR) and nitrite reductase (NiR), in nitrogen‐replete cultures of 3 diatoms (Chaetoceros sp., Skeletonema costatum, Thalassiosira weissflogii) and 3 flagellates (Dunaliella tertiolecta, Pavlova lutheri, Prorocentrum minimum) to provide insight into the differences in nitrogen release patterns observed between these species. At NO3 ? concentrations <40 μmol‐N·L ? 1, all the diatom species and the dinoflagellate P. minimum exhibited saturating kinetics, whereas the other flagellates, D. tertiolecta and P. lutheri, did not saturate, leading to very high estimated K s values. Above ~60 μmol‐N·L ? 1, NO3 ? uptake rates of all species tested continued to increase in a linear fashion. Rates of NO3 ? uptake at 40 μmol‐N·L ? 1, normalized to cellular nitrogen, carbon, cell number, and surface area, were generally greater for diatoms than flagellates. Diatoms stored significant amounts of NO3 ? internally, whereas the flagellate species stored significant amounts of NH4 + . Half‐saturation concentrations for NR and NiR were similar between all species, but diatoms had significantly lower temperature optima for NR and NiR than did the flagellates tested in most cases. Relative to calculated biosynthetic demands, diatoms were found to have greater NO3 ? uptake and NO3 ? reduction rates than flagellates. This enhanced capacity for NO3 ? uptake and reduction along with the lower optimum temperature for enzyme activity could explain differences in nitrogen release patterns between diatoms and flagellates after an increase in irradiance.  相似文献   

15.
A Paracoccus denitrificans strain (M6Ω) unable to use nitrate as a terminal electron acceptor was constructed by insertional inactivation of the periplasmic and membrane-bound nitrate reductases. The mutant strain was able to grow aerobically with nitrate as the sole nitrogen source. It also grew anaerobically with nitrate as sole nitrogen source when nitrous oxide was provided as a respiratory electron acceptor. These growth characteristics are attributed to the presence of a third, assimilatory nitrate reductase. Nitrate reductase activity was detectable in intact cells and soluble fractions using nonphysiological electron donors. The enzyme activity was not detectable when ammonium was included in the growth medium. The results provide an unequivocal demonstration that P. denitrificans can express an assimilatory nitrate reductase in addition to the well-characterised periplasmic and membrane-bound nitrate reductases. Received: 12 August 1996 / Accepted: 29 October 1996  相似文献   

16.
Under anaerobic circumstances in the presence of nitrateParacoccus denitrificans is able to denitrify. The properties of the reductases involved in nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase are described. For that purpose not only the properties of the enzymes ofP. denitrificans are considered but also those fromEscherichia coli, Pseudomonas aeruginosa, andPseudomonas stutzeri. Nitrate reductase consists of three subunits: the subunit contains the molybdenum cofactor, the subunit contains the iron sulfur clusters, and the subunit is a special cytochromeb. Nitrate is reduced at the cytoplasmic side of the membrane and evidence for the presence of a nitrate-nitrite antiporter is presented. Electron flow is from ubiquinol via the specific cytochromeb to the nitrate reductase. Nitrite reductase (which is identical to cytochromecd 1) and nitrous oxide reductase are periplasmic proteins. Nitric oxide reductase is a membrane-bound enzyme. Thebc 1 complex is involved in electron flow to these reductases and the whole reaction takes place at the periplasmic side of the membrane. It is now firmly established that NO is an obligatory intermediate between nitrite and nitrous oxide. Nitrous oxide reductase is a multi-copper protein. A large number of genes is involved in the acquisition of molybdenum and copper, the formation of the molybdenum cofactor, and the insertion of the metals. It is estimated that at least 40 genes are involved in the process of denitrification. The control of the expression of these genes inP. denitrificans is totally unknown. As an example of such complex regulatory systems the function of thefnr, narX, andnarL gene products in the expression of nitrate reductase inE. coli is described. The control of the effects of oxygen on the reduction of nitrate, nitrite, and nitrous oxide are discussed. Oxygen inhibits reduction of nitrate by prevention of nitrate uptake in the cell. In the case of nitrite and nitrous oxide a competition between reductases and oxidases for a limited supply of electrons from primary dehydrogenases seems to play an important role. Under some circumstances NO formed from nitrite may inhibit oxidases, resulting in a redistribution of electron flow from oxygen to nitrite.P. denitrificans contains three main oxidases: cytochromeaa 3, cytochromeo, and cytochromeco. Cytochromeo is proton translocating and receives its electrons from ubiquinol. Some properties of cytochromeco, which receives its electrons from cytochromec, are reported. The control of the formation of these various oxidases is unknown, as well as the control of electron flow in the branched respiratory chain. Schemes for aerobic and anaerobic electron transport are given. Proton translocation and charge separation during electron transport from various electron donors and by various electron transfer pathways to oxygen and nitrogenous oxide are given. The extent of energy conservation during denitrification is about 70% of that during aerobic respiration. In sulfate-limited cultures (in which proton translocation in the NADH-ubiquinone segment of the respiratory chain is lost) the extent of energy conservation is about 60% of that under substrate-limited conditions. These conclusions are in accordance with measurements of molar growth yields.  相似文献   

17.
18.
19.
Field experiments were conducted to determine the effect of sulfur (S) and Nitrogen (N) on nitrate reductase (NR) and ATP-sulfurylase activities in groundnut cultivars (Arachis hypogea L. cv. Ambar and Kaushal). Two combinations of S (in kg ha-1): OS (-S) and 20S (+S) were used with 20 kg ha-1 N. The application of S enhanced the NR and ATP-sulfurylase activities in both the cultivars at all the growth stages. The application of S also increased soluble protein and chlorophyll content in the all growth stages of both the cultivars. NR and ATP-sulfurylase activities in the leaves were measured at various growth stages as the two enzymes catalyze the rate limiting steps of the assimilatory pathways of nitrate and sulfate, respectively.  相似文献   

20.
Strain 21gr from Chlamydomonas reinhardtii is a cryptic mutant defective in the Nit5 gene related to the biosynthesis of molybdenum cofactor (MoCo). In spite of this mutation, this strain has active MoCo and can grow on nitrate media. In genetic crosses, the Nit5 mutation cosegregated with a phenotype of resistance to high concentrations of molybdate and tungstate. Molybdate/tungstate toxicity was much higher in nitrate than in ammonium media. Strain 21gr showed lower amounts of MoCo activity than the wild type both when grown in nitrate and after growth in ammonium and nitrate induction. However, nitrate reductase (NR) specific activity was similar in wild type and 21gr cells. Tungstate, either at nanomolar concentrations in nitrate media or at micromolar concentrations during growth in ammonium and nitrate induction, strongly decreased MoCo and NR amounts in wild‐type cells but had a slight effect in 21gr cells. Molybdate uptake activity of ammonium‐grown cells from both the wild‐type and 21gr strains was small and blocked by sulphate 0·3 mM . However, cells from nitrate medium showed a molybdate uptake activity insensitive to sulphate. This uptake activity was much higher and more sensitive to inhibition by tungstate in the wild type than in strain 21gr. These results suggest that strain 21gr has a high affinity and low capacity molybdate transport system able to discriminate efficiently tungstate, and lacks a high capacity molybdate/tungstate transport system, which operates in wild‐type cells upon nitrate induction. This high capacity molybdate transport system would account for both the stimulating effect of molybdate on MoCo amounts and the toxic effects of tungstate and molybdate when present at high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号