首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microsporidian Encephalitozoon cuniculi is an intracellular eukaryotic parasite considered to be an emerging opportunistic human pathogen. The infectious stage of this parasite is a unicellular spore that is surrounded by a chitin containing endospore layer and an external proteinaceous exospore. A putative chitin deacetylase (ECU11_0510) localizes to the interface between the plasma membrane and the endospore. Chitin deacetylases are family 4 carbohydrate esterases in the CAZY classification, and several bacterial members of this family are involved in evading lysis by host glycosidases, through partial de‐N‐acetylation of cell wall peptidoglycan. Similarly, ECU11_0510 could be important for E. cuniculi survival in the host, by protecting the chitin layer from hydrolysis by human chitinases. Here, we describe the biochemical, structural, and glycan binding properties of the protein. Enzymatic analyses showed that the putative deacetylase is unable to deacetylate chitooligosaccharides or crystalline β‐chitin. Furthermore, carbohydrate microarray analysis revealed that the protein bound neither chitooligosaccharides nor any of a wide range of other glycans or chitin. The high resolution crystal structure revealed dramatic rearrangements in the positions of catalytic and substrate binding residues, which explain the loss of deacetylase activity, adding to the unusual structural plasticity observed in other members of this esterase family. Thus, it appears that the ECU11_0510 protein is not a carbohydrate deacetylase and may fulfill an as yet undiscovered role in the E. cuniculi parasite.  相似文献   

2.
We purified to homogeneity an intracellular esterase from the opportunistic pathogen Pseudomonas aeruginosa PAO1. The enzyme hydrolyzes p-nitrophenyl acetate and other acetylated substrates. The N-terminal amino acid sequence was analyzed and 11 residues, SEPLILDAPNA, were determined. The corresponding gene PA3859 was identified in the P. aeruginosa PAO1 genome as the only gene encoding for a protein with this N-terminus. The encoding gene was cloned in Escherichia coli, and the recombinant protein expressed and purified to homogeneity. According to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis and analytical gel filtration chromatography, the esterase was found to be a monomer of approximately 24 kDa. The experimentally determined isoelectric point was 5.2 and the optimal enzyme activity was at 55°C and at pH 9.0. The esterase preferentially hydrolyzed short-chain fatty acids. It is inhibited by phenylmethylsulfonyl fluoride (PMSF) but not by ethylendiaminotetraacetic acid (EDTA). Native enzyme preparations typically showed a Michaelis constant (Km) and Vmax of 0.43 mM and 12,500 U mg–1, respectively, using p-nitrophenyl acetate as substrate. Homology-based database searches clearly revealed the presence of the consensus GXSXG signature motif that is present in the serine-dependent acylhydrolase protein family.  相似文献   

3.
Serum albumin, recognized mainly for its capacity to act as a carrier protein for many compounds, can also actively transform some organic molecules. As a starting point in this study, we consider esterase‐like activity of bovine serum albumin (BSA) toward p‐nitrophenyl acetate (p‐NPA). Our results reveal that the reaction goes beyond ester hydrolysis step. In fact, the transformation product, p‐nitrophenol (p‐NP), becomes a substrate for further reaction with BSA in which its nitro group in subtracted and released in the form of HNO2. Spectral data indicate that this cascade of events proceeds through formation of phenoxyl radical via proton‐coupled electron transport (PCET) between OH group of p‐NP and imidazole ring of histidine from the protein. Furthermore, the effect of application of electromagnetic radiation in the infrared range suggests that this remote physical trigger can support interactions based on PCET mechanism by acting on polarization and mutual alignment of water dipoles serving as effective water wires.  相似文献   

4.
Aims: A novel ferulic acid esterase gene from rumen fungus Anaeromyces mucronatus was cloned, heteroexpressed in Escherichia coli and characterized. Methods and Results: A total of 30 clones exhibiting activity on α‐naphthyl acetate (α‐NA) were isolated from an A. mucronatus YE505 cDNA library. Sequence analysis revealed that these clones represented two esterase‐coding sequences. The gene, fae1A, showed highest amino acid sequence identity to CE family 1 esterases from anaerobic micro‐organisms such as Orpinomyces sp., Ruminococcus albus and Clostridium thermocellum. The gene comprised 828 nucleotides encoding a polypeptide of 275 amino acids. The coding sequence was cloned into the pET30a expression vector and overexpressed in E. coli BL21 (DE3). Gene product Fae1A was found to exhibit activity against a number of substrates including naphthyl fatty acid esters, p‐nitrophenyl fatty acid esters and hydroxylcinnamic acid esters. Conclusions: Fae1A exhibited a lower Km and higher catalytic efficiency (kcat/Km) on ferulic acid esters than on α‐NA or p‐nitrophenyl acetate, suggesting that it has a higher affinity for ethyl and methyl ferulate than for the acetyl esters. It releases ferulic acid and p‐coumaric acid from barley straw. Activity of Fae1A was inhibited by the serine‐specific protease inhibitor, phenylmethylsulfonyl fluoride, indicating that a serine residue plays a role in its activity. Significance and Impact of the Study: To our knowledge, this is the first report of characterization of carbohydrate esterase gene from the genus of Anaeromyces.  相似文献   

5.
Aims: To investigate the attractant effect of 4‐O‐(N‐acetyl‐β‐d ‐glucosaminyl)‐d ‐glucosamine (GlcNAc‐GlcN) in the chemotaxis of Vibrio bacteria that produce carbohydrate esterase (CE) family 4 chitin oligosaccharide deacetylase (COD), an enzyme that catalyzes the production of GlcNAc‐GlcN from N,N′‐diacetylchitobiose (GlcNAc)2. Methods and Results: The chemotactic effect of disaccharides from chitin on several strains of Vibrio bacteria was investigated using an agar gel lane‐migration method. The results demonstrated that GlcNAc‐GlcN functions as an effective chemoattractant in the CE family 4 COD‐producing vibrios, Vibrio parahaemolyticus and Vibrio alginolyticus. In contrast, this phenomenon was not observed in Vibrio nereis or Vibrio furnissii, which lack genes encoding this enzyme. From transmission electron microscope observation of V. parahaemolyticus cells following the chemotaxis assay, GlcNAc‐GlcN appears to stimulate polar flagellum rotation. Conclusions: GlcNAc‐GlcN is a specific chemoattractant for the CE family 4 COD‐producing vibrios, V. parahaemolyticus and V. alginolyticus. Significance and Impact of the Study: It was clarified for the first time that GlcNAc‐GlcN functions as a signalling molecule in the chemotaxis of Vibrio bacteria that have an ability to produce CE family 4 COD, which generate GlcNAc‐GlcN from (GlcNAc)2.  相似文献   

6.
An esterase which is encoded within a Thermotoga maritima chromosomal gene cluster for xylan degradation and utilization was characterized after heterologous expression of the corresponding gene in Escherichia coli and purification of the enzyme. The enzyme, designated AxeA, shares amino acid sequence similarity and its broad substrate specificity with the acetyl xylan esterase from Bacillus pumilus, the cephalosporin C deacetylase from Bacillus subtilis, and other (putative) esterases, allowing its classification as a member of carbohydrate esterase family 7. The recombinant enzyme displayed activity with p-nitrophenyl-acetate as well as with various acetylated sugar substrates such as glucose penta-acetate, acetylated oat spelts xylan and DMSO (dimethyl sulfoxide)-extracted beechwood xylan, and with cephalosporin C. Thermotoga maritima AxeA represents the most thermostable acetyl xylan esterase known to date. In a 10 min assay at its optimum pH of 6.5 the enzyme's activity peaked at 90°C. The inactivation half-life of AxeA at a protein concentration of 0.3 µg µl−1 in the absence of substrate was about 13 h at 98°C and about 67 h at 90°C. Differential scanning calorimetry analysis of the thermal stability of AxeA corroborated its extreme heat resistance. A multi-phasic unfolding behaviour was found, with two apparent exothermic peaks at approximately 100–104°C and 107.5°C. In accordance with the crystal structure, gel filtration analysis at ambient temperature revealed that the enzyme has as a homohexameric oligomerization state, but a dimeric form was also found.  相似文献   

7.
A gene (Tx-est1) encoding a thermostable feruloyl-esterase was isolated from the genome of the Gram-positive hemicellulolytic thermophilic bacterium Thermobacillus xylanilyticus. This gene contains an open reading frame of 1,020 bp encoding a protein with molecular mass of 37.4 kDa, similar to feruloyl-esterases from cellulolytic bacteria and fungi. The recombinant enzyme Tx-Est1 was expressed and produced in Escherichia coli. Tx-Est1 contains the conserved putative lipase residues Ser 202, Asp 287, and His 322 which act as catalytic triad in its C-terminus part. Purified Tx-Est1 was active against phenolic acid derivatives and stable at high temperatures. Optimal activity was observed at 65 °C and the optimal pH was around 8.5. The kinetic parameters of the esterase were determined on various substrates. The enzyme displayed activity against methyl esters of hydrocinnamic acids and feruloylated arabino-xylotetraose, exhibiting high specificity and affinity for the latter. Our results showed that Tx-Est1 is a thermostable feruloyl-esterase which could be useful to hydrolyze arabinoxylans from graminaceous plant cell walls as the enzyme is able to release phenolic acids from a lignocellulose biomass.  相似文献   

8.
A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose, whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure prediction server.  相似文献   

9.
Aims: The aim of the study was to isolate a novel lipolytic enzyme from the activated sludge of uncultured micro‐organisms. Methods and Results: The metagenomic DNA was directly extracted from the activated sludge, and a metagenomic library was constructed by using the pUC vector. The library was screened for lipolytic enzyme activity on 1% tributyrin agar plate. A clone among c. 100 000 recombinant libraries showed the lipolytic activity. The putative lipolytic gene encoding lipo1 from the metagenomic library was subcloned and expressed in Escherichia coli BL21 using the pET expression system. The expressed recombinant enzyme was purified by Ni‐nitrilotriacetic acid affinity chromatography and characterized using general substrates of lipolytic property. The gene consisted of 972 bp encoding a polypeptide of 324 amino acids with a molecular mass of 35·6 kDa. Typical residues essential for lipolytic activity such as penta‐peptide (GXSXG) and catalytic triad sequences (Ser166, Asp221 and His258) were detected. The deduced amino acid sequence of lipo1 showed low identity with amino acid sequences of esterase/lipase (32%, ZP_01528487 ) from Pseudomonas mendocina ymp and esterase (31%, AAY45707 ) from uncultured bacterium. This lipolytic enzyme exhibited the highest activity at pH 7·5 and 10°C. At thermal stability analysis, lipo1 was more unstable at 40°C than 10°C. Conclusions: An activity based strategy has been an effective method for fishing out a low‐temperature adapted lipolytic enzyme from the metagenomic library. This lipo1 enzyme can be considered to belong to the hormone‐sensitive lipase family due to the enzyme’s oxyanion hole by the sequence HGGG. Significance and Impact of the Study: Lipo1 is a novel psychrophilic esterase obtained directly from the metagenomic library. Owing its support of significant activity at low temperature, this enzyme is expected to be useful for potential application as a biocatalyst in organic chemistry.  相似文献   

10.
11.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45°C and the half-life was 1 h at 64°C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chainfatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37°C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

12.
A salt‐tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p‐nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three‐dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat‐resistant features. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:890–899, 2015  相似文献   

13.
The white-rot fungus Phanerochaete chrysosporium produces glucuronoyl esterase, a recently discovered carbohydrate esterase, during growth on sugar beet pulp. Two putative genes encoding this enzyme, ge1 and ge2, were isolated and cloned. Heterologous expression in Aspergillus vadensis, Pycnoporus cinnabarinus and Schizophyllum commune resulted in extracellular glucuronoyl esterase activity, demonstrating that these genes encode this enzymatic function. The amino acid sequence of GE1 was used to identify homologous genes in the genomes of twenty-four fungi. Approximately half of the genomes, both from ascomycetes and basidiomycetes, contained putative orthologues, but their presence could not be assigned to any of fungal class or subclass. Comparison of the amino acid sequences of identified and putative glucuronoyl esterases to other types of carbohydrate esterases (CE) confirmed that they form a separate family of CEs. These enzymes are interesting candidates for biotechnological applications such as the separation of lignin and hemicellulose.  相似文献   

14.
Summary A DNA fragment encoding for 598 amino acids of chitinase protein from Bacillus circulans No. 4.1 was subcloned into pQE-30 expression vector and transformed into Escherichia coli M15 (pREP4). The molecular weight of the expressed protein was approximately 66 kDa. Enzymatic activity of the recombinant protein was assayed after purification using affinity chromatography on a nickel chelating resin. The enzyme hydrolyzed N-acetylchitooligosaccharides mainly to N-acetylchitobiose, and was active toward chitin, carboxymethyl-chitin, colloidal chitin, glycol chitin and 4-methylumbelliferyl-β-d-N, N′-diacetylchitobiose. The pH and temperature optima of the chitinase enzyme were 7.0 and 45 °C, respectively. This enzyme was stable in the pH range of 5.0–9.0 and at temperatures up to 50 °C. In addition, when cleaved by a proteolytic enzyme, the 20-kDa product could retain high chitinolytic activity.  相似文献   

15.
Zhang J  Liu J  Zhou J  Ren Y  Dai X  Xiang H 《Biotechnology letters》2003,25(17):1463-1467
The lipA gene encoding a thermostable esterase was cloned from Thermoanaerobacter tengcongensis and overexpressed in Escherichia coli. The recombinant esterase, with a molecular mass of approx. 43 kDa determined by SDS-PAGE, was purified to homogeneity through Sephadex G-100 gel filtration. The purified enzyme actively hydrolyzed tributyrin but not olive oil. Maximum activity was observed on p-nitrophenyl (NP)-propionate (C3) and p-NP-butyrate (C4), with little activity towards p-NP-palmitate (C16). The esterase was optimally active at 70 °C (over 15 min) and at pH 9. It is highly thermostable, with a residual activity greater than 80% after incubation at 50 °C for more than 10 h. The activity was not inhibited by 5 mM EDTA and PMSF, indicating the esterase is not a metalloenzyme and may contain a specific structure around the catalytic serine residue. In addition, it was stable for 1 h at 37 °C in 1% CHAPS and Triton X-100 but not stable in 1% Tween 20 or SDS.  相似文献   

16.
An open reading frame (ORF) encoding chitin oligosaccharide deacetylase (Pa-COD) gene and its signal sequence was cloned from the Vibrio parahaemolyticus KN1699 genome and its sequence was analyzed. The ORF encoded a 427 amino acid protein, including the 22 amino acid signal sequence. The deduced amino acid sequence was highly similar to several bacterial chitin oligosaccharide deacetylases in carbohydrate esterase family 4. An expression plasmid containing the gene was constructed and inserted into Escherichia coli cells and the recombinant enzyme was secreted into the culture medium with the aid of the signal peptide. The concentration of the recombinant enzyme in the E. coli culture medium was 150 times larger than that of wild-type enzyme produced in the culture medium by V. parahaemolyticus KN1699. The recombinant enzyme was purified to homogeneity from culture supernatant in an overall yield of 16%. Substrate specificities of the wild-type and the recombinant enzymes were comparable.  相似文献   

17.
Ferulic andp-coumaric acid can be separated from their corresponding aliphatic methyl esters by capillary zone electrophoresis, which allows the convenient determination of feruloyl andp-coumaroyl esterase activities using synthetic esters as substrates. A feruloyl-containing sugar ester from wheat bran was also efficiently separated and used as substrate for the enzyme assays.Penicillium expansum was shown to produce feruloyl/p-coumaroyl esterase activity when grown on wheat bran in solid-state culture.The authors are with the Food Microbiology Research Division, Department of Agriculture for Northern Ireland, Newforge Lane, Belfast BT9 5PX, UK; A.M. McKay is also affiliated with the Department of Food Science (Microbiology), The Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX, UK.  相似文献   

18.
Using a metagenome library constructed from a bacterial associated with a marine sponge Hyrtios erecta, we identified a novel esterase that belongs to the SGNH hydrolase superfamily of esterases. The substrate specificity of EstHE1 was determined using p-nitrophenyl (pNP) ester (C2: acetate, C4: butylate, C6: caproate, C12: laurate, C16: palmitate). EstHE1 exhibited activity against C2 (5.6 U/mg), C4 (5.1 U/mg), and C6 (2.8 U/mg) substrates. The optimal temperature for EstHE1 esterase activity of the pNP acetate substrate was 40°C, and EstHE1 retained 60% of its enzymatic activity in the 30–50°C range. This esterase showed moderate thermostability, retaining 58% of its activity even after preincubation for 12 h at 40°C. EstHE1 also maintained activity in high concentrations of NaCl, indicating that this esterase is salt-tolerant. Thus, EstHE1 has the thermal stability and salt tolerance necessary for use as an industrial enzyme.  相似文献   

19.
A genomic library of Bacillus coagulans strain 81-11 was screened in Escherichia coli JM83 for lipolytic activity by using tributyrin agar plates. A 2.4 kb DNA fragment was subcloned from a lipolytic-positive clone and completely sequenced. Nucleotide sequence analysis predicted a 723 bp open reading frame (ORF), designated estC1, encoding a protein of 240 amino acids with an estimated molecular mass of 27 528 Da and a pI of 9.15. The deduced amino acid sequence of the estC1 gene exhibited significant amino acid sequence identity with carboxylesterases from thermophilic Geobacillus spp. and sequence analysis showed that the protein contains the signature G-X-S-X-G included in most esterases and lipases. Enzyme assays using p-nitrophenyl (p-NP) esters with different acyl chain lengths as the substrate confirmed the esterase activity. EstC1 exhibited a marked preference for esters of short-chain fatty acids, yielding the highest activity with p-NP butyrate. Maximum activity was found at pH 8 and 50°C, although the enzyme displayed stability at temperatures up to 60°C.  相似文献   

20.
Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE‐1, AtFAE‐2, and AtFAE‐3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH‐dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5–8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca2+, K+, and Mg2+ stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (kcat/Km) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF‐MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE‐1 belonged to type A while AtFAE‐2 and AtFAE‐3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:924–932, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号