首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the overexpression of the Rgp-1 (arginine) protease domain from Porphyromonas gingivalis. This protease and the related Kgp (lysine) protease, both of which display trypsin-like specificity, have been implicated as major virulence factors and may play a significant role in the etiology of periodontal disease. Both Rgp-1 and Kgp are initially translated as polyproteins, each containing a protease domain and multiple adhesin domains. The Rgp-1 protease domain was expressed in E. coli, purified, refolded, and assayed for activity. These expression studies demonstrated that prior to the formation of inclusion bodies in the E. coli cytoplasm, the protease was proteolytically active and could hydrolyze a specific synthetic substrate. When the Rgp-1 protease domain was purified from inclusion bodies and refolded, it was found to be autolytically active and displayed specific catalytic activity. This is the first report on the expression and purification of active Rgp-1 from E. coli. Polyclonal antisera raised against recombinant protein recognized the native form of the protease in the P. gingivalis strain W50, indicating that the recombinant protein contained some of the antigenic determinants of the native protease.  相似文献   

2.
Porphyromonas gingivalis is an obligately anaerobic bacterium recognized as an aetiological agent of adult periodontitis. P. gingivalis produces cysteine proteinases, the gingipains. The crystal structure of a domain within the haemagglutinin region of the lysine gingipain (Kgp) is reported here. The domain was named K2 as it is the second of three homologous structural modules in Kgp. The K2 domain structure is a ‘jelly‐roll’ fold with two anti‐parallel β‐sheets. This fold topology is shared with adhesive domains from functionally diverse receptors such as MAM domains, ephrin receptor ligand binding domains and a number of carbohydrate binding modules. Possible functions of K2 were investigated. K2 induced haemolysis of erythrocytes in a dose‐dependent manner that was augmented by the blocking of anion transport. Further, cysteine‐activated arginine gingipain RgpB, which degrades glycophorin A, sensitized erythrocytes to the haemolytic effect of K2. Cleaved K2, similar to that found in extracted Kgp, lacks the haemolytic activity indicating that autolysis of Kgp may be a staged process which is artificially enhanced by extraction of the protein. The data indicate a functional role for K2 in the integrated capacity conferred by Kgp to enable the porphyrin auxotroph P. gingivalis to capture essential haem from erythrocytes.  相似文献   

3.
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.  相似文献   

4.
5.

Background  

Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA) and short (Mfa) fimbriae as well as gingipains comprised of arginine-specific (Rgp) and lysine-specific (Kgp) cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms.  相似文献   

6.
Interleukin (IL)‐31 is important for innate immunity in mucosal tissues and skin, and increased IL‐31 expression participates in the pathogenesis of chronic inflammatory diseases affecting the skin, airways, lungs, and intestines. We investigated the contribution of mast cells to the induction of IL‐31 production following infection with the periodontal pathogen, Porphyromonas gingivalis. We found that oral infection with P. gingivalis increased IL‐31 expression in the gingival tissues of wild‐type mice but not in those of mast cell‐deficient mice. The P. gingivalis‐induced IL‐31 production by human mast cells occurred through the activation of the JNK and NF‐κB signalling pathways and was dependent on the P. gingivalis lysine‐specific protease gingipain‐K. P. gingivalis infection induced IL‐31 receptor α and oncostatin M receptor β expression in human gingival epithelial cells. Notably, the P. gingivalis‐induced IL‐31 production by mast cells led to the downregulation of claudin‐1, a tight junction molecule, in gingival epithelial cells, resulting in an IL‐31‐dependent increase in the paracellular permeability of the gingival epithelial barrier. These findings suggest that IL‐31 produced by mast cells in response to P. gingivalis infection causes gingival epithelial barrier dysfunction, which may contribute to the chronic inflammation observed in periodontitis.  相似文献   

7.
Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys477-His444-Asp388, rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates.  相似文献   

8.
Porphyromonas gingivalis utilizes its major proteases, Arg gingipains (RgpA and RgpB) and Lys gingipain (Kgp), for dysregulation of host immune systems. The aim of this study was to investigate the roles of gingipains in caspase‐1 activation and its sequelae in P. gingivalis‐infected macrophages. Infection with P. gingivalis at low multiplicity of infections (MOIs), but not at high MOIs, resulted in low levels of interleukin‐1β and lactate dehydrogenase without detectable active caspase‐1 in the culture supernatants. The proteins released from caspase‐1‐activated cells were rapidly degraded by gingipains. However, P. gingivalis with gingipains induced higher intracellular caspase‐1 activity in the infected cells than the gingipain‐null mutant, which was associated with ATP release from the infected cells. In addition, growing the gingipain‐null mutant with gingipains enhanced caspase‐1 activation by the mutant. In contrast, inhibition of the protease activity of Kgp or Rgps increased the caspase‐1‐activating potential of wild‐type P. gingivalis, indicating an inhibitory effect of the collaborative action of Kgp and Rgps. These results illuminate the contradictory roles of gingipains in the manipulation of host defence systems by P. gingivalis, as they act by both stimulating and inhibiting innate immune responses.  相似文献   

9.
Periodontal disease destroys the tooth‐supporting tissues as a result of chronic inflammation elicited by bacterial accumulation on tooth surfaces. Porphyromonas gingivalis is a major periodontal pathogen, with a significant capacity to perturb connective tissue homeostasis and immune responses in the periodontium, attributed to its virulence factors, including a group of secreted cysteine proteases (gingipains). PAR‐2 (protease‐activated receptor‐2) is a G‐protein‐coupled receptor activated upon proteolytic cleavage, mediating intracellular signalling events related to infection and inflammation, such as cytokine production. GF (gingival fibroblasts) and T cells have central roles in periodontal inflammation, which can potentially be mediated by PAR‐2. The aims of this study were to investigate the effects of P. gingivalis on PAR‐2 gene expression in human GF and Jurkat T cells, using quantitative real‐time PCR, and to evaluate the involvement of gingipains. After 6 h of challenge with ascending concentrations of P. gingivalis, PAR‐2 expression was up‐regulated in both cell types by approximately 5‐fold, compared with the control. The P. gingivalis concentration required for maximal PAR‐2 induction was 4‐fold greater in GF than Jurkat T cells. Heat inactivation or chemical inhibition of cysteine proteases abolished the capacity of P. gingivalis to induce PAR‐2 expression in Jurkat T cells. In conclusion, P. gingivalis can induce PAR‐2 expression in GF and Jurkat T cells, potentially attributed to its gingipains. These findings denote that P. gingivalis may perturb the host immune and inflammatory responses by enhancing PAR‐2 expression, thus contributing to the pathogenesis of periodontal disease.  相似文献   

10.
This paper describes the overexpression of the Rgp-1 (arginine) protease domain from Porphyromonas gingivalis. This protease and the related Kgp (lysine) protease, both of which display trypsin-like specificity, have been implicated as major virulence factors and may play a significant role in the etiology of periodontal disease. Both Rgp-1 and Kgp are initially translated as polyproteins, each containing a protease domain and multiple adhesin domains. The Rgp-1 protease domain was expressed in E. coli, purified, refolded, and assayed for activity. These expression studies demonstrated that prior to the formation of inclusion bodies in the E. coli cytoplasm, the protease was proteolytically active and could hydrolyze a specific synthetic substrate. When the Rgp-1 protease domain was purified from inclusion bodies and refolded, it was found to be autolytically active and displayed specific catalytic activity. This is the first report on the expression and purification of active Rgp-1 from E. coli. Polyclonal antisera raised against recombinant protein recognized the native form of the protease in the P. gingivalis strain W50, indicating that the recombinant protein contained some of the antigenic determinants of the native protease.  相似文献   

11.
Porphyromonas gingivalis is one of the major periodontitis-causing pathogens. P. gingivalis secretes a group of proteases termed gingipains, and in this study we have used the RgpB gingipain as a biomarker for P. gingivalis. We constructed a naive camel nanobody library and used phage display to select one nanobody toward RgpB with picomolar affinity. The nanobody was used in an inhibition assay for detection of RgpB in buffer as well as in saliva. The nanobody was highly specific for RgpB given that it did not bind to the homologous gingipain HRgpA. This indicated the presence of a binding epitope within the immunoglobulin-like domain of RgpB. A subtractive inhibition assay was used to demonstrate that the nanobody could bind native RgpB in the context of intact cells. The nanobody bound exclusively to the P. gingivalis membrane-bound RgpB isoform (mt-RgpB) and to secreted soluble RgpB. Further cross-reactivity studies with P. gingivalis gingipain deletion mutants showed that the nanobody could discriminate between native RgpB and native Kgp and RgpA in complex bacterial samples. This study demonstrates that RgpB can be used as a specific biomarker for P. gingivalis detection and that the presented nanobody-based assay could supplement existing methods for P. gingivalis detection.  相似文献   

12.
Gingival epithelial cells function as an innate host defence system to prevent intrusion by periodontal bacteria. Nevertheless, Porphyromonas gingivalis, the most well‐known periodontal pathogen, can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. However, it is poorly understood how this pathogen exits from infected cells for further transcellular spreading. The present study was performed to elucidate the cellular machinery exploited by P. gingivalis to exit from immortalized human gingival epithelial cells. P. gingivalis was shown to be internalized with early endosomes positive for the FYVE domain of EEA1 and transferrin receptor, and about half of the intracellular bacteria were then sorted to lytic compartments, including autolysosomes and late endosomes/lysosomes, while a considerable number of the remaining organisms were sorted to Rab11‐ and RalA‐positive recycling endosomes. Inhibition experiments revealed that bacterial exit was dependent on actin polymerization, lipid rafts and microtubule assembly. Dominant negative forms and RNAi knockdown of Rab11, RalA and exocyst complex subunits (Sec5, Sec6 and Exo84) significantly disturbed the exit of P. gingivalis. These results strongly suggest that the recycling pathway is exploited by intracellular P. gingivalis to exit from infected cells to neighbouring cells as a mechanism of cell‐to‐cell spreading.  相似文献   

13.
The Gram‐negative periodontal pathogen Porphyromonas gingivalis produces a family of outer membrane‐anchored proteases, the gingipains, shown to play an essential role in virulence of the organism. The C‐terminal domain (CTD) of gingipains and other secreted proteins is known to be the targeting signal for maturation and translocation of the protein through the outer membrane. The CTD is subsequently cleaved during the secretion process. Multiple alignment of various CTDs failed to define a consensus sequence at the putative CTD processing site. Using mutagenesis, we were able to show that cleavage at the site is not dependent on a specific residue and that recognition of the site is independent of local sequence. Interestingly, length of the junction between the CTD and adjacent Ig‐like subdomain has a critical influence on post‐translational glycan modification of the protein, whereby insertion of additional residues immediately N‐terminal to the cleavage site results in failure of glycan modification and release of soluble protease into the culture medium. Various hypotheses are presented to explain these phenomena. Knowledge of the role CTDs play in maturation of gingipains has broader application for understanding maturation of CTD homologues expressed by bacteria of the Bacteriodetes phylum.  相似文献   

14.
Abstract

Four gingivain proteases, active in presence of L-cysteine, were purified from spent culture media of oral pathogen Porphyromonas gingivalis by ion-exchange chromatography on MonoQ and chromatofocusing on MonoP columns. Three of the purified proteases, with molecular masses of 75 kDa, 70 kDa and 55 kDa, respectively, hydrolyzed synthetic chromogenic substrates with arginine in the P1 position. One protease, with a molecular mass of 80 kDa, hydrolyzed substrates with lysine in the P1 position. It is proposed these enzymes be named: arg-gingivain-75, arg-gingivain-70, arg-gingivain-55, and lys-gingivain-80, respectively, based on their molecular mass and specificity for either arginine or lysine in the P1 position.  相似文献   

15.
Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders.  相似文献   

16.
Gingipains are potent virulence cysteine proteases secreted by Porphyromonas gingivalis, a major pathogen of periodontitis. We previously reported that epimedokoreanin B inhibits the activities of gingipains. In this report, we show that epimedokoreanin B inhibits the virulence of gingipains-containing P. gingivalis culture supernatants, indicating the potential use of this prenylated flavonoid as a new agent to combat against periodontal pathogens.  相似文献   

17.
Porphyromonas gingivalis is a major pathogen in the initiation and progression of periodontal disease, which is recognized as a common complication of diabetes. ICAM‐1 expression by human gingival fibroblasts (HGFs) is crucial for regulating local inflammatory responses in inflamed periodontal tissues. However, the effect of P. gingivalis in a high‐glucose situation in regulating HGF function is not understood. The P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the modulation of HGF ICAM‐1 expression by invasion of high‐glucose‐treated P. gingivalis (HGPg). A high‐glucose condition upregulated fimA mRNA expression in P. gingivalis and increased its invasion ability in HGFs. HGF invasion with HGPg induced increases in the expression of ICAM‐1. By using specific inhibitors and short hairpin RNA (shRNA), we have demonstrated that the activation of p38 MAPK and Akt pathways is critical for HGPg‐induced ICAM‐1 expression. Luciferase reporters and chromatin immunoprecipitation assays suggest that HGPg invasion increases NF‐κB‐ and Sp1‐DNA‐binding activities in HGFs. Inhibition of NF‐κB and Sp1 activations blocked the HGPg‐induced ICAM‐1 promoter activity and expression. The effect of HGPg on HGF signalling and ICAM‐1 expression is mediated by CXC chemokine receptor 4 (CXCR4). Our findings identify the molecular pathways underlying HGPg‐dependent ICAM‐1 expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs.  相似文献   

18.
Porphyromonas gingivalis is strongly implicated in adult periodontitis. This oral pathogen expresses adhesive filamentous appendages, known as fimbriae, which constitute one of its major virulence factors. Fimbriae are composed of polymerized fimbrillin (FimA) subunits and play an indispensable role in the ability of P. gingivalis to colonize and invade periodontal tissue and to induce alveolar bone loss. The virulence potential of fimbriae is attributable to their capacity to interact with various dental or epithelial substrates, extracellular matrix proteins, other bacteria, and host immune cells. It has been puzzling whether the multifunctional adhesive ability of fimbriae results from multiple adhesion epitopes specific for each receptor, or whether fimbriae contain versatile structural motifs that are recognizable by multiple receptors. This review summarizes peptide mapping studies that have defined functional epitopes of P. gingivalis fimbriae. Available evidence suggests that the binding of fimbriae to various receptors generally involves specific amino acid sequences of the FimA subunit, although the same FimA peptide may occasionally recognize different receptors. Moreover, in cases where distinct FimA peptides interact with the same receptor, the peptides involved share common sequences. It therefore appears that the promiscuous binding reactivity of P. gingivalis fimbriae is attributable to a multitude of adhesion epitopes which however share minimal binding elements, although the overall hydrophobicity and polymeric nature of fimbriae may significantly enhance the avidity of binding interactions. Peptide mapping of fimbriae is significant also for translational purposes, such as for development of subunit vaccines that contain defined immunogenic and functionally important epitopes and for identification of peptides that can competitively inhibit virulence activities of P. gingivalis fimbriae. Studies performed in the author’s lab and cited in this review were supported by U.S. Public Health Service Grant DE015254 from the NIDCR, National Institutes of Health.  相似文献   

19.
Prevotella melaninogenica is a gram‐negative anaerobic commensal bacterium that resides in the human oral cavity and is isolated as a pathogen of suppurative diseases both inside and outside the mouth. However, little is known about the pathogenic factors of P. melaninogenica. The periodontal pathogens Porphyromonas gingivalis and Tanerella forsythia secrete virulence factors such as protease and bacterial cell surface proteins via a type IX secretion system (T9SS) that are involved in pathogenicity. P. melaninogenica also possesses all known orthologs of T9SS. In this study, a P. melaninogenica GAI 07411 mutant deficient in the orthologue of the T9SS‐encoding gene, porK, was constructed. Hemagglutination and biofilm formation were decreased in the porK mutant. Furthermore, following growth on skim milk‐containing medium, the diameters of the halos surrounding the porK mutant were smaller than those of the wild‐type strain, suggesting a decrease in secretion of proteases outside the bacterium. To investigate this in detail, culture supernatants of wild‐type and porK mutant strains were purified and compared by two‐dimensional electrophoresis. In the mutant strain, fewer spots were detected, indicating fewer secreted proteins. In infection experiments, the mortality rate of mice inoculated with the porK mutant strain was significantly lower than in the wild‐type strain. These results suggest that P. melaninogenica secretes potent virulence factors via the T9SS that contribute to its pathogenic ability.
  相似文献   

20.
PA3535 (EprS), an autotransporter (AT) protein of Pseudomonas aeruginosa, is predicted to contain a serine protease motif. The eprS encodes a 104.5 kDa protein with a 30‐amino‐acid‐long signal peptide, a 51.2 kDa amino‐terminal secreted passenger domain and a 50.1 kDa carboxyl‐terminal outer membrane channel formed translocator. Although the majority of AT proteins have been reported to be virulence factors, little is known about the functions of EprS in the pathogenicity of P. aeruginosa. In this study, we performed functional analyses of recombinant EprS secreted by Escherichia coli. The proteolytic activity of EprS was markedly decreased by changing Ser to Ala at position 308 or by serine protease inhibitors. EprS preferred to cleave substrates that terminated with arginine or lysine residues. Thus, these results indicate that EprS, a serine protease, displays the substrate specificity, cleaving after basic residues. We demonstrated that EprS activates NF‐κB‐driven promoters through protease‐activated receptor (PAR)‐1, ‐2 or ‐4 and induces IL‐8 production through PAR‐2 in a human bronchiole epithelial cell line. Moreover, EprS cleaved the peptides corresponding to the tethered ligand region of PAR‐1, ‐2 and ‐4 at a specific site with exposure oftheir tethered ligands. Collectively, these results suggest that EprS activates host inflammatory responses through PARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号