首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The maltose transporter from Escherichia coli is one of the ATP‐binding cassette (ABC) transporters that utilize the energy from ATP hydrolysis to translocate substrates across cellular membranes. Until 2011, three crystal structures have been determined for maltose transporter at different states in the process of transportation. Here, based on these crystal structures, the allosteric pathway from the resting state (inward‐facing) to the catalytic intermediate state (outward‐facing) is studied by applying an adaptive anisotropic network model. The results suggest that the allosteric transitions proceed in a coupled way. The closing of the nucleotide‐binding domains occurs first, and subsequently this conformational change is propagated to the transmembrane domains (TMD) via the EAA and EAS loops, and then to the maltose‐binding protein, which facilitates the translocation of the maltose. It is also found that there exist nonrigid‐body and asymmetric movements in the TMD. The cytoplasmic gate may only play the role of allosteric propagation during the transition from the pretranslocation to outward‐facing states. In addition, the results show that the movment of the helical subdomain towards the RecA‐like subdomain mainly occurs in the earlier stages of the transition. These results can provide some insights into the understanding of the mechanism of ABC transporters. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 758–768, 2014.  相似文献   

2.
The ATP‐binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal‐fetal interface. We and others have demonstrated a gestational age‐dependent expression pattern of two ABC transporters, P‐glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational‐age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.  相似文献   

3.
We have assigned the 1H, 15N, 13C backbone resonances of the second periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter of Escherichia coli/Salmonella which is important for the recognition of the maltose binding protein MalE.  相似文献   

4.
The Escherichia coli maltose transporter MalFGK2‐E belongs to the protein superfamily of ATP‐binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide‐binding domains (NBDs) MalK2. In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all‐atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward‐facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF‐P2), and thus prevented the incorrect arrangement of the MalF C‐terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2. This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.  相似文献   

5.
Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme–substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme–product complex (trapped by ADP-vanadate). 20 Å resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.  相似文献   

6.
Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide‐binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin‐labeled cysteine mutants suggests that, in the resting state, this sub‐domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3‐D structure of BmrA and that residues within these two sub‐domains are essential for proper functioning of this transporter.  相似文献   

7.
We report the steady state ATPase activities of the ATP Binding Cassette (ABC) exporter NaAtm1 in the absence and presence of a transported substrate, oxidized glutathione (GSSG), in detergent, nanodiscs, and proteoliposomes. The steady state kinetic data were fit to the “nonessential activator model” where the basal ATPase rate of the transporter is stimulated by GSSG. The detailed kinetic parameters varied between the different reconstitution conditions, highlighting the importance of the lipid environment for NaAtm1 function. The increased ATPase rates in the presence of GSSG more than compensate for the modest negative cooperativity observed between MgATP and GSSG in lipid environments. These studies highlight the central role of the elusive ternary complex in accelerating the ATPase rate that is at the heart of coupling mechanism between substrate transport and ATP hydrolysis.  相似文献   

8.
MalFGK2 is an ATP‐binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose‐binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide‐binding subunits (MalK dimer). This MBP‐stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose‐bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi‐open MalK dimer. Maltose‐bound MBP promotes the transition to the semi‐open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi‐open MalK2 conformation by maltose‐bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi‐open conformation, from which it can proceed to hydrolyze ATP.  相似文献   

9.
Recent crystal structures of the multidrug ATP‐binding cassette (ABC) exporters Sav1866 from Staphylococcus aureus, MsbA from Escherichia coli, Vibrio cholera, and Salmonella typhimurium, and mouse ABCB1a suggest a common alternating access mechanism for export. However, the molecular framework underlying this mechanism is critically dependent on assumed conformational relationships between nonidentical crystal structures and therefore requires biochemical verification. The structures of homodimeric MsbA reveal a pair of glutamate residues (E208 and E208′) in the intracellular domains of its two half‐transporters, close to the nucleotide‐binding domains (NBDs), which are in close proximity of each other in the outward‐facing state but not in the inward‐facing state. Using intermolecular cysteine crosslinking between E208C and E208C′ in E. coli MsbA, we demonstrate that the NBDs dissociate in nucleotide‐free conditions and come close on ATP binding and ADP·vanadate trapping. Interestingly, ADP alone separates the half‐transporters like a nucleotide‐free state, presumably for the following catalytic cycle. Our data fill persistent gaps in current studies on the conformational dynamics of a variety of ABC exporters. Based on a single biochemical method, the findings describe a conformational cycle for a single ABC exporter at major checkpoints of the ATPase reaction under experimental conditions, where the exporter is transport active. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
EmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14A and E14B (one from each subunit in the antiparallel homodimer), in the primary binding site. Here, we explicitly test this hypothesis, since EmrE has repeatedly broken expectations for membrane protein structure and transport mechanism. We previously showed that EmrE can bind a +1 cationic substrate and proton simultaneously, with cationic substrate strongly associated with one E14 residue, whereas the other remains accessible to bind and transport a proton. Here, we demonstrate that EmrE can bind a +2 cation substrate and a proton simultaneously using NMR pH titrations of EmrE saturated with divalent substrates, for a net +1 charge in the transport pore. Furthermore, we find that EmrE can alternate access and transport a +2 substrate and proton at the same time. Together, these results lead us to conclude that E14 charge neutralization does not limit the binding and transport capacity of EmrE.  相似文献   

11.
ATP-binding cassette (ABC) transporters are well known for their roles as multidrug resistance determinants but also play important roles in regulation of lipid levels. In the yeast Saccharomyces cerevisiae, the plasma membrane ABC transporter proteins Pdr5 and Yor1 are required for normal rates of transport of phosphatidyethanolamine to the surface of the cell. Loss of these ABC transporters causes a defect in phospholipid asymmetry across the plasma membrane and has been linked with slowed rates of trafficking of other membrane proteins. Four ABC transporter proteins are found on the limiting membrane of the yeast vacuole and loss of one of these vacuolar ABC transporters, Ybt1, caused a major defect in the normal delivery of the phosphatidylcholine (PC) analog NBD-PC (7-nitro-2,1,3-benzoxadiazol-PC) to the lumen of the vacuole. NBD-PC accumulates on cytosolic membranes in an ybt1Δ strain. We demonstrated that Ybt1 is required to import NBD-PC into vacuoles in the presence of ATP in vitro. Loss of Ybt1 prevented vacuolar remodeling of PC analogs. Turnover of Ybt1 was reduced under conditions in which function of this vacuolar remodeling pathway was required. Our data describe a novel vacuolar route for lipid remodeling and reutilization in addition to previously described enzymatic avenues in the cytoplasm.  相似文献   

12.
Nucleotide-induced conformational changes of the 70-kDa peroxisomal membrane protein (PMP70) were investigated by means of limited-trypsin digestion. Rat liver peroxisomes preincubated with various nucleotides were subsequently digested by trypsin. The digestion products were subjected to immunoblot analysis with an anti-PMP70 antibody that recognizes the carboxyl-terminal 15 amino acids of the protein. PMP70 was initially cleaved in the boundary region between the transmembrane and nucleotide-binding domains and a carboxyl-terminal 30-kDa fragment resulted. The fragment in turn was progressively digested at the helical domain between the Walker A and B motifs. The fragment, however, could be stabilized with MgATP or MgADP. In contrast to MgATP, MgATP-gammaS protected whole PMP70 as well as the fragment. The 30-kDa fragment processed by trypsin was recovered in the post-peroxisomal fraction as a complex with a molecular mass of about 60 kDa irrespective of the presence of MgATP. These results suggest that PMP70 exists as a dimer on the peroxisomal membranes and the binding and hydrolysis of ATP induce conformational changes in PMP70 close to the boundary between the transmembrane and nucleotide binding domains and the helical domain between the Walker A and B motifs.  相似文献   

13.
An elevation in blood glucose concentration leads to increased risk of developing diabetes‐associated atherosclerotic cardiovascular disease due to an excessive accumulation of cholesterol in arterial macrophages. ATP‐binding cassette transporter A1 (ABCA1) is an atheroprotective protein that mediates the export of cholesterol from macrophages. The present study aims to investigate the effect of hyperglycemia on the regulation of ABCA1 expression and to explore its underlying mechanisms of regulation in macrophages. Our results show that high glucose activates the extracellular signal‐regulated kinases (ERK) signaling pathway via reactive oxygen species (ROS) production, which in turn down‐regulates ABCA1 mRNA and protein expression. This down‐regulation is mediated by accelerating ABCA1 mRNA and protein degradation in macrophages exposed to high concentrations of glucose. Our results provide evidence for the first time that hyperglycemia inhibits ABCA1 expression by ERK‐modulated ABCA1 mRNA and protein stability. Overall, these results provide a mechanism for hyperglycemia‐induced reduction in ABCA1 expression, which suggests a promising strategy for the treatment of diabetes‐associated atherosclerosis. J. Cell. Biochem. 114: 1364–1373, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
ATP‐binding cassette (ABC) transporters have been shown to be involved in pesticide detoxification in arthropod vectors and are thought to contribute to the development of drug resistance. Little is currently known about the role they play in ticks, which are among the more important vectors of human and animal pathogens. Here, the role of ABC transporters in the transport of fipronil and ivermectin acaricides in the tick Rhipicephalus sanguineus (Ixodida: Ixodidae) was investigated. Larvae were treated with acaricide alone and acaricide in combination with a sub‐lethal dose of the ABC transporter inhibitor cyclosporine A. The LC50 doses and 95% confidence intervals (CIs) estimated by mortality data using probit analysis were 67.930 p.p.m. (95% CI 53.780–90.861) for fipronil and 3741 p.p.m. (95% CI 2857–4647) for ivermectin. The pre‐exposure of larvae to a sub‐lethal dose of cyclosporine A reduced the LC50 dose of fipronil to 4.808 p.p.m. (95% CI 0.715–9.527) and that of ivermectin to 167 p.p.m. (95% CI 15–449), which increased toxicity by about 14‐ and 22‐fold, respectively. The comparison of mortality data for each separate acaricide concentration showed the synergic effect of cyclosporine A to be reduced at higher concentrations of acaricide. These results show for the first time a strong association between ABC transporters and acaricide detoxification in R.sanguineus s.l.  相似文献   

15.
The composition of the outer membrane in Gram‐negative bacteria is asymmetric, with the lipopolysaccharides found in the outer leaflet and phospholipids in the inner leaflet. The MlaC protein transfers phospholipids from the outer to inner membrane to maintain such lipid asymmetry in the Mla pathway. In this work, we have performed molecular dynamics simulations on apo and phospholipid‐bound systems to study the dynamical properties of MlaC. Our simulations show that the phospholipid forms hydrophobic interactions with the protein. Residues surrounding the entrance of the binding site exhibit correlated motions to control the site opening and closing. Lipid binding leads to increase of the binding pocket volume and precludes entry of the water molecules. However, in the absence of the phospholipid, water molecules can freely move in and out of the binding site when the pocket is open. Dehydration occurs when the pocket closes. This study provides dynamic information of the MlaC protein and may facilitate the design of antibiotics against the Mla pathway of Gram‐negative bacteria.  相似文献   

16.
17.
  • Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown.
  • In this study, we isolated a cDNA encoding LeMRP, an ATP‐binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real‐time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes.
  • Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real‐time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up‐regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down‐regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots.
  • Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin.
  相似文献   

18.
ATP-binding cassette (ABC) transporters constitute a large superfamily of integral membrane proteins that includes both importers and exporters. In recent years, several structures of complete ABC transporters have been determined by X-ray crystallography. These structures suggest a mechanism by which binding and hydrolysis of ATP by the cytoplasmic, nucleotide-binding domains control the conformation of the transmembrane domains and therefore which side of the membrane the translocation pathway is exposed to. A basic, conserved two-state mechanism can explain active transport of both ABC importers and ABC exporters, but various questions remain unresolved. In this article, I will review some of the crystal structures and the mechanistic insight gained from them. Future challenges for a better understanding of the mechanism of ABC transporters will be outlined.  相似文献   

19.
During disseminated infection by the opportunistic pathogen Candida glabrata, uptake of sterols such as serum cholesterol may play a significant role during pathogenesis. The ATP‐binding cassette transporter Aus1p is thought to function as a sterol importer and in this study, we show that uptake of exogenous sterols occurred under anaerobic conditions in wild‐type cells of C. glabrata but not in AUS1‐deleted mutant (aus1Δ) cells. In aerobic cultures, growth inhibition by fluconazole was prevented in the presence of serum, and AUS1 expression was upregulated. Uptake of sterol by azole treated cells required the presence of serum, and sterol alone did not reverse FLC inhibition of growth. However, if iron availability in the growth medium was limited by addition of the iron chelators ferrozine or apo‐transferrin, growth of wild‐type cells, but not aus1Δ cells, was rescued. In a mouse model of disseminated infection, the C. glabrata aus1Δ strain caused a significantly decreased kidney fungal burden than the wild‐type strain or a strain in which AUS1 was restored. We conclude that sterol uptake in C. glabrata can occur in iron poor environment of host tissues and thus may contribute to C. glabrata pathogenesis.  相似文献   

20.
Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self‐immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli. Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward‐occluded and a new nucleotide‐bound state, high‐energy outward‐occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross‐linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi‐drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic‐level build‐up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号