首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxidative species (ROS) and S‐glutathionylation modulate the activity of plant cytosolic triosephosphate isomerases (cTPI). Arabidopsis thaliana cTPI (AtcTPI) is subject of redox regulation at two reactive cysteines that function as thiol switches. Here we investigate the role of these residues, AtcTPI‐Cys13 and At‐Cys218, by substituting them with aspartic acid that mimics the irreversible oxidation of cysteine to sulfinic acid and with amino acids that mimic thiol conjugation. Crystallographic studies show that mimicking AtcTPI‐Cys13 oxidation promotes the formation of inactive monomers by reposition residue Phe75 of the neighboring subunit, into a conformation that destabilizes the dimer interface. Mutations in residue AtcTPI‐Cys218 to Asp, Lys, or Tyr generate TPI variants with a decreased enzymatic activity by creating structural modifications in two loops (loop 7 and loop 6) whose integrity is necessary to assemble the active site. In contrast with mutations in residue AtcTPI‐Cys13, mutations in AtcTPI‐Cys218 do not alter the dimeric nature of AtcTPI. Therefore, modifications of residues AtcTPI‐Cys13 and AtcTPI‐Cys218 modulate AtcTPI activity by inducing the formation of inactive monomers and by altering the active site of the dimeric enzyme, respectively. The identity of residue AtcTPI‐Cys218 is conserved in the majority of plant cytosolic TPIs, this conservation and its solvent‐exposed localization make it the most probable target for TPI regulation upon oxidative damage by reactive oxygen species. Our data reveal the structural mechanisms by which S‐glutathionylation protects AtcTPI from irreversible chemical modifications and re‐routes carbon metabolism to the pentose phosphate pathway to decrease oxidative stress.  相似文献   

2.
Peroxiredoxins efficiently remove hydroperoxides and peroxynitrite in pro‐ and eukaryotes. However, isoforms of one subfamily of peroxiredoxins, the so‐called Prx6‐type enzymes, usually have very low activities in standard peroxidase assays in vitro. In contrast to other peroxiredoxins, Prx6 homologues share a conserved histidyl residue at the bottom of the active site. Here we addressed the role of this histidyl residue for redox catalysis using the Plasmodium falciparum homologue PfPrx6 as a model enzyme. Steady‐state kinetics with tert‐butyl hydroperoxide (tBuOOH) revealed that the histidyl residue is nonessential for Prx6 catalysis and that a replacement with tyrosine can even increase the enzyme activity four‐ to six‐fold in vitro. Stopped‐flow kinetics with reduced PfPrx6WT, PfPrx6C128A, and PfPrx6H39Y revealed a preference for H2O2 as an oxidant with second order rate constants for H2O2 and tBuOOH around 2.5 × 107 M?1 s?1 and 3 × 106 M?1 s?1, respectively. Differences between the oxidation kinetics of PfPrx6WT, PfPrx6C128A, and PfPrx6H39Y were observed during a slower second‐reaction phase. Our kinetic data support the interpretation that the reductive half‐reaction is the rate‐limiting step for PfPrx6 catalysis in steady‐state measurements. Whether the increased activity of PfPrx6H39Y is caused by a facilitated enzyme reduction because of a destabilization of the fully folded enzyme conformation remains to be analyzed. In summary, the conserved histidyl residue of Prx6‐type enzymes is non‐essential for catalysis, PfPrx6 is rapidly oxidized by hydroperoxides, and the gain‐of‐function mutant PfPrx6H39Y might provide a valuable tool to address the influence of conformational changes on the reactivity of Prx6 homologues.  相似文献   

3.
In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg‐type” enzymes) and some having a Gln substituted for this Arg (“Gln‐type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg‐type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln‐type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron‐bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln‐type” CDO enzymes, we conclude that the “Gln‐type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3‐mercaptopropionate dioxygenases.  相似文献   

4.
The characteristic oxidation or reduction reaction mechanisms of short‐chain oxidoreductase (SCOR) enzymes involve a highly conserved Asp‐Ser‐Tyr‐Lys catalytic tetrad. The SCOR enzyme Q9HYA2 from the pathogenic bacterium Pseudomonas aeruginosa was recognized to possess an atypical catalytic tetrad composed of Lys118‐Ser146‐Thr159‐Arg163. Orthologs of Q9HYA2 containing the unusual catalytic tetrad along with conserved substrate and cofactor recognition residues were identified in 27 additional species, the majority of which are bacterial pathogens. However, this atypical catalytic tetrad was not represented within the Protein Data Bank. The crystal structures of unligated and NADPH‐complexed Q9HYA2 were determined at 2.3 Å resolution. Structural alignment to a polyketide ketoreductase (KR), a typical SCOR, demonstrated that Q9HYA2's Lys118, Ser146, and Arg163 superimposed upon the KR's catalytic Asp114, Ser144, and Lys161, respectively. However, only the backbone of Q9HYA2's Thr159 overlapped KR's catalytic Tyr157. The Thr159 hydroxyl in apo Q9HYA2 is poorly positioned for participating in catalysis. In the Q9HYA2–NADPH complex, the Thr159 side chain was modeled in two alternate rotamers, one of which is positioned to interact with other members of the tetrad and the bound cofactor. A chloride ion is bound at the position normally occupied by the catalytic tyrosine hydroxyl. The putative active site of Q9HYA2 contains a chemical moiety at each catalytically important position of a typical SCOR enzyme. This is the first observation of a SCOR protein with this alternate catalytic center that includes threonine replacing the catalytic tyrosine and an ion replacing the hydroxyl moiety of the catalytic tyrosine.  相似文献   

5.
A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate–ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol–cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.  相似文献   

6.
Cofactor-independent phosphoglycerate mutase (iPGM) has been previously identified as a member of the alkaline phosphatase (AlkP) superfamily of enzymes, based on the conservation of the predicted metal-binding residues. Structural alignment of iPGM with AlkP and cerebroside sulfatase confirmed that all these enzymes have a common core structure and revealed similarly located conserved Ser (in iPGM and AlkP) or Cys (in sulfatases) residues in their active sites. In AlkP, this Ser residue is phosphorylated during catalysis, whereas in sulfatases the active site Cys residues are modified to formylglycine and sulfatated. Similarly located Thr residue forms a phosphoenzyme intermediate in one more enzyme of the AlkP superfamily, alkaline phosphodiesterase/nucleotide pyrophosphatase PC-1 (autotaxin). Using structure-based sequence alignment, we identified homologous Ser, Thr, or Cys residues in other enzymes of the AlkP superfamily, such as phosphopentomutase, phosphoglycerol transferase, phosphonoacetate hydrolase, and GPI-anchoring enzymes (glycosylphosphatidylinositol phosphoethanolamine transferases) MCD4, GPI7, and GPI13. We predict that catalytical cycles of all the enzymes of AlkP superfamily include phosphoenzyme (or sulfoenzyme) intermediates.  相似文献   

7.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   

8.
Mycobacterial cell walls are complex structures containing a broad range of unusual lipids, glycolipids and other polymers, some of which act as immunomodulators or virulence determinants. Better understanding of the enzymes involved in export processes would enlighten cell wall biogenesis. Bernut et al. ( 2015 ) present the findings of a structural and functional investigation of one of the most important transporter families, the MmpL proteins, members of the resistance‐nodulation‐cell division (RND) superfamily. A Tyr842His missense mutation in the mmpL4a gene was shown to be responsible for the smooth‐to‐rough morphotype change of the near untreatable opportunistic pathogen Mycobacterium bolletii due to its failure to export a glycopeptidolipid (GPL). This mutation was pleiotropic and markedly increased virulence in infection models. Tyr842 is well conserved in all actinobacterial MmpL proteins suggesting that it is functionally important and this was confirmed by several approaches including replacing the corresponding residue in MmpL3 of Mycobacterium tuberculosis. Structural modelling combined with experimental results showed Tyr842 to be a critical residue for mediating the proton motive force required for GPL export. This mechanistic insight applies to all MmpL proteins and probably to all RND transporters.  相似文献   

9.
Selenocysteine (Sec) is the 21st amino acid in the genetic code and it is present in a small number of proteins where it replaces the much more commonly used amino acid cysteine (Cys). It is both more complicated and bioenergetically costly to insert Sec into a protein in comparison to Cys, and this cost is most likely compensated by a gain of function to the enzyme/protein in which it is incorporated. Here we investigate one such gain of function, the enhancement of one‐electron transfer catalysis. We compared the ability of Sec‐containing mouse mitochondrial thioredoxin reductase (mTrxR2) to catalyze the reduction of bovine cytochrome c, ascorbyl radical, and dehydroascorbate in comparison to Cys‐containing thioredoxin reductases from D. melanogaster (DmTrxR) and P. falciparum (PfTrxR). The Sec‐containing mTrxR2 was able to reduce all three substrates, while the Cys‐containing enzymes had little or no activity. In addition, we constructed Cys?Sec mutants of DmTrxR and PfTrxR and found that this substitution resulted in a gain of function, as these mutant enzymes were now able to catalyze the reduction of these substrates. We also found that in the case of PfTrxR, reduction of cytochrome c was enhanced five‐fold in a truncated PfTrxR in which the C‐terminal redox center was removed. This shows that some of the ability of thioredoxin reductase to reduce this substrate comes from the flavin coenzyme. We also discuss a possible mechanism by which Sec‐containing thioredoxin reductase reduces dehydroascorbate to ascorbate by two sequential, one‐electron reductions, in part catalyzed by Sec.  相似文献   

10.
The transient opening of a backdoor in the active‐site wall of acetylcholinesterase, one of nature's most rapid enzymes, has been suggested to contribute to the efficient traffic of substrates and products. A crystal structure of Torpedo californica acetylcholinesterase in complex with the peripheral‐site inhibitor aflatoxin is now presented, in which a tyrosine at the bottom of the active‐site gorge rotates to create a 3.4‐Å wide exit channel. Molecular dynamics simulations show that the opening can be further enlarged by movement of Trp84. The crystallographic and molecular dynamics simulation data thus point to the interface between Tyr442 and Trp84 as the key element of a backdoor, whose opening permits rapid clearance of catalysis products from the active site. Furthermore, the crystal structure presented provides a novel template for rational design of inhibitors and reactivators, including anti‐Alzheimer drugs and antidotes against organophosphate poisoning.  相似文献   

11.
Iodination of the conserved 2-tyrosine (Tyr(2)) residue in the pressin and tocin rings of arginine- or lysine-vasopressin (AVP or LVP), and oxytocin, respectively, impairs binding to their respective receptors. Synthetic antagonists that have their Tyr(2) either replaced by another amino acid or irreversibly blocked by an O-methyl or O-ethyl ether, but have, instead, an iodinatable phenol moiety outside the pressin/tocin ring, are used for radiolabeling. We explored another approach to avoid iodinating Tyr(2) by capping this residue with a reversible O-acetyl group, incorporated during peptide synthesis. The O-acetyl-Tyr(2) LVP peptide, with a free iodinatable tyrosine attached to the epsilon-amine of 8-lysine, is iodinated at a neutral pH and purified by reverse-phase high-pressure liquid chromatography (HPLC) at an acidic pH, conditions under which the O-acetyl groups are stable. Deacetylation with hydroxylamine is selective, and leaves intact the disulfide bridge. The marked shortening of the HPLC retention time after deblocking produces a chemically homogeneous label, iodinated exclusively on the free tyrosine residue attached to the epsilon-amine of LVP. Hitherto, this (125)I labeled vasopressin agonist could be obtained only in low yield, via conjugation labeling with iodinated N-t-Boc-tyrosine succinimidyl ester. This fully reversible tyrosine protection strategy does not require special equipment, and retains the conserved Tyr(2), typical of vasopressin and oxytocin agonists.  相似文献   

12.
13.
Plasmodium falciparum triosephosphate isomerase (PfTIM) is known to be functional only as a homodimer. Although many studies have shown that the interface Cys13 plays a major role in the stability of the dimer, a few reports have demonstrated that structurally conserved Tyr74 may be essential for the stability of PfTIM dimer. To understand the role of Tyr74, we have performed molecular dynamics (MD) simulations of monomeric and dimeric PfTIM mutated to glycine and cysteine at position 74. Simulations of the monomer revealed that mutant Tyr74Gly does not produce changes in folding and stability of the monomer. Interestingly, comparison of the flexibility of Tyr74 in the monomer and dimer revealed that this residue possesses an intrinsic restricted mobility, indicating that Tyr74 is an anchor residue required for homodimerization. Tyr74 also appears to play an important role in binding by facilitating the disorder-to-order transitions of loops 1 and 3, which allows Cys13 to form favorable interactions with loop 3 and Lys12 to be locked in a favorable position for catalysis. High-temperature MD simulations of the wild-type and Tyr74Gly PfTIM dimers showed that the aromatic moiety of Tyr74 is necessary to preserve the geometry and native contacts between loops 1 and 3 at the interface of the dimer. Disulfide cross-linking between mutant Tyr74Cys and Cys13 further revealed that Tyr74 stabilizes the geometry of loop 1 (which contains the catalytic residue Lys12) and the interactions between loops 1 and 3 via aromatic-aromatic interactions with residues Phe69, Tyr101, and Phe102. Principal component analysis showed that Tyr74 is also necessary to preserve the collective motions in the dimer that contribute to the catalytic efficiency of PfTIM dimer. We conclude that Tyr74 not only plays a role in the stability of the dimer, but also participates in the dimerization process and collective motions via coupled disorder-to-order transitions of intrinsically disordered regions, necessary for efficiency in the catalytic function of PfTIM.  相似文献   

14.
Serine β-lactamases contribute widely to the β-lactam resistance phenomena. Unfortunately, the intimate details of their catalytic mechanism remain elusive and subject to some controversy even though many “natural” and “artificial” mutants of these different enzymes have been isolated. This paper is essentially focused on class C β-lactamases, which contain a Tyr (Tyr150) as the first residue of the second conserved element, in contrast to their class A counterparts, in which a Ser is found in the corresponding position. We have modified this Tyr residue by site-directed mutagenesis. On the basis of the three-dimensional structure of the Enterobacter cloacae P99 enzyme, it seemed that residues Glu272 and His314 might also be important. They were similarly substituted. The modified enzymes were isolated and their catalytic properties determined. Our results indicated that His314 was not required for catalysis and that Glu272 did not play an important role in acylation but was involved to a small extent in the deacylation process. Conversely, Tyr150 was confirmed to be central for catalysis, at least with the best substrates. On the basis of a comparison of data obtained for several class C enzyme mutants and in agreement with recent structural data, we propose that the phenolate anion of Tyr150, in conjunction with the alkyl ammonium of Lys315, acts as the general base responsible for the activation of the active-site Ser64 during the acylation step and for the subsequent activation of a water molecule in the deacylation process. The evolution of the important superfamily of penicillin-recognizing enzymes is further discussed in the light of this proposed mechanism. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Dimitri A. Svistunenko 《BBA》2005,1707(1):127-155
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the π-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; αTyr42, αTrp14, βTrp15, βCys93, (αTyr24−αHis20), all in the α- and β-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.  相似文献   

16.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

17.
18.
The MarR/DUF24‐type repressor YodB controls the azoreductase AzoR1, the nitroreductase YodC and the redox‐sensing regulator Spx in response to quinones and diamide in Bacillus subtilis. Previously, we showed using a yodBCys6‐Ala mutant that the conserved Cys6 apparently contributes to the DNA‐binding activity of YodB in vivo. Here, we present data that mutation of Cys6 to Ser led to a form of the protein that was reduced in redox‐sensing in response to diamide and 2‐methylhydroquinone (MHQ) in vivo. DNA‐binding experiments indicate that YodB is regulated by a reversible thiol‐modification in response to diamide and MHQ in vitro. Redox‐regulation of YodB involves Cys6‐Cys101' intermolecular disulfide formation by diamide and quinones in vitro. Diagonal Western blot analyses confirm the formation of intersubunit disulfides in YodB in vivo that require the conserved Cys6 and either of the C‐terminal Cys101' or Cys108' residues. This study reveals a thiol‐disulfide switch model of redox‐regulation for the YodB repressor to sense electrophilic compounds in vivo.  相似文献   

19.
Non‐photosynthetic and hydrophilic chlorophyll (Chl) proteins, called water‐soluble Chl‐binding proteins (WSCPs), are distributed in various species of Chenopodiaceae, Amaranthaceae, Polygonaceae and Brassicaceae. Based on their photoconvertibility, WSCPs are categorised into two classes: Class I (photoconvertible) and Class II (non‐photoconvertible). Chenopodium album WSCP (CaWSCP; Class I) is able to convert the chlorin skeleton of Chl a into a bacteriochlorin‐like skeleton under light in the presence of molecular oxygen. Potassium iodide (KI) is a strong inhibitor of the photoconversion. Because KI attacks tyrosine residues in proteins, tyrosine residues in CaWSCP are considered to be important amino acid residues for the photoconversion. Recently, we identified the gene encoding CaWSCP and found that the mature region of CaWSCP contained four tyrosine residues: Tyr13, Tyr14, Tyr87 and Tyr134. To gain insight into the effect of the tyrosine residues on the photoconversion, we constructed 15 mutant proteins (Y13A, Y14A, Y87A, Y134A, Y13‐14A, Y13‐87A, Y13‐134A, Y14‐87A, Y14‐134A, Y87‐134A, Y13‐14‐87A, Y13‐14‐134A, Y13‐87‐134A, Y14‐87‐134A and Y13‐14‐87‐134A) using site‐directed mutagenesis. Amazingly, all the mutant proteins retained not only chlorophyll‐binding activity, but also photoconvertibility. Furthermore, we found that KI strongly inhibited the photoconversion of Y13‐14‐87‐134A. These findings indicated that the four tyrosine residues are not essential for the photoconversion.  相似文献   

20.
The Poisson-Boltzmann method was used to compute the pK(a) values of titratable residues in a set of class C beta-lactamases. In these calculations, the pK(a) of the phenolic group of residue Tyr150 is the only one to stand out with an abnormally low value of 8.3, more than one pK(a) unit lower than the measured reference value for tyrosine in solution. Other important residues of the catalytic pocket, such as the conserved Lys67, Lys315, His314, and Glu272 (hydrogen-bonded to the ammonium group of Lys315), display normal protonation states at neutral pH. pK(a) values were also computed in catalytically impaired beta-lactamase mutants. Comparisons between the relative k(cat) values and the Tyr150 pK(a) value in these mutants revealed a striking correlation. In active enzymes, this pK(a) value is always lower than the solution reference value while it is close to normal in inactive enzymes. These results thus support the hypothesis that the phenolate form of Tyr150 is responsible for the activation of the nucleophilic serine. The possible roles of Lys67 and Lys315 during catalysis are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号