共查询到20条相似文献,搜索用时 15 毫秒
1.
Fenaille F Le Mignon M Groseil C Ramon C Riandé S Siret L Bihoreau N 《Glycobiology》2007,17(9):932-944
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein. 相似文献
2.
Over the last few years we have developed mass spectrometry-based approaches for selective identification of a variety of posttranslational modifications, and for sequencing the modified peptides. These methods do not involve radiolabeling or derivatization. Instead, modification-specific fragment ions are produced by collision-induced dissociation (CID) during analysis of peptides by ESMS. The formation and detection of these marker ions on-the-fly during the LC-ESMS analysis of a protein digest is a powerful technique for identifying posttranslationally modified peptides. Using the marker ion strategy in an orthogonal fashion, a precursor ion scan can detect peptides which give rise to a diagnostic fragment ion, even in an unfractionated protein digest. Once the modified peptide has been located, the appropriate precursor ion can be sequenced by tandem MS. The utility and interplay of this approach to mapping PTM is illustrated with examples that involve protein glycosylation and phosphorylation. 相似文献
3.
Jamaluddin MF Bailey UM Tan NY Stark AP Schulz BL 《Protein science : a publication of the Protein Society》2011,20(5):849-855
Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues. 相似文献
4.
Tristan Wagner Matthieu Alexandre Rosario Duran Nathalie Barilone Annemarie Wehenkel Pedro M. Alzari Marco Bellinzoni 《Proteins》2015,83(5):982-988
Signal transduction mediated by Ser/Thr phosphorylation in Mycobacterium tuberculosis has been intensively studied in the last years, as its genome harbors eleven genes coding for eukaryotic‐like Ser/Thr kinases. Here we describe the crystal structure and the autophosphorylation sites of the catalytic domain of PknA, one of two protein kinases essential for pathogen's survival. The structure of the ligand‐free kinase domain shows an auto‐inhibited conformation similar to that observed in human Tyr kinases of the Src‐family. These results reinforce the high conservation of structural hallmarks and regulation mechanisms between prokaryotic and eukaryotic protein kinases. Proteins 2015; 83:982–988. © 2015 Wiley Periodicals, Inc. 相似文献
5.
Manfred S. Weiss Tom Sicker Kristina Djinovic‐Carugo Rolf Hilgenfeld 《Acta Crystallographica. Section D, Structural Biology》2001,57(5):689-695
A diffraction data set has been collected from a blood coagulation factor XIII–Ca2+ complex crystal at the X‐ray diffraction beamline of the ELETTRA synchrotron (Trieste, Italy) at a wavelength of 2.6 Å. The data collection could be carried out using the beamline as is, without making any time‐consuming changes to the apparatus. Various data‐processing schemes have been employed and it has been observed that local or detector scaling procedures are essential for producing the `best' anomalous differences. 相似文献
6.
D. C. Neville C. R. Rozanas E. M. Price D. B. Gruis A. S. Verkman R. R. Townsend 《Protein science : a publication of the Protein Society》1997,6(11):2436-2445
The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an apical membrane Cl- channel regulated by protein phosphorylation. To identify cAMP-dependent protein kinase (PKA)-phosphorylated residues in full-length CFTR, immobilized metal-ion affinity chromatography (IMAC) was used to selectively purify phosphopeptides. The greater specificity of iron-loaded (Fe3+) nitrilotriacetic (NTA). Sepharose compared to iminodiacetic acid (IDA) metal-chelating matrices was demonstrated using a PKA-phosphorylated recombinant NBD1-R protein from CFTR. Fe(3+)-loaded NTA Sepharose preferentially bound phosphopeptides, whereas acidic and poly-His-containing peptides were co-purified using the conventional IDA matrices. IMAC using NTA Sepharose enabled the selective recovery of phosphopeptides and identification of phosphorylated residues from a complex proteolytic digest. Phosphopeptides from PKA-phosphorylated full-length CFTR, generated in Hi5 insect cells using a baculovirus expression system, were purified using NTA Sepharose. Phosphopeptides were identified using matrix-assisted laser desorption mass spectrometry (MALDI/MS) with post-source decay (PSD) analysis and collision-induced dissociation (CID) experiments. Phosphorylated peptides were identified by mass and by the metastable loss of HPO3 and H3PO4 from the parent ions. Peptide sequence and phosphorylation at CFTR residues 660Ser, 737Ser, and 795Ser were confirmed using MALDI/PSD analysis. Peptide sequences and phosphorylation at CFTR residues 700Ser, 712Ser, 768Ser, and 813Ser were deduced from peptide mass, metastable fragment ion formation, and PKA consensus sequences. Peptide sequence and phosphorylation at residue 753Ser was confirmed using MALDI/CID analysis. This is the first report of phosphorylation of 753Ser in full-length CFTR. 相似文献
7.
Franz‐Georg Hanisch Professor Sebastian Teitz Tilo Schwientek Stefan Müller 《Proteomics》2009,9(3):710-719
We describe a cyclic on‐column procedure for the sequential degradation of complex O‐glycans on proteins or peptides by periodate oxidation of sugars and cleavage of oxidation products by elimination. Desialylated glycoproteins were immobilized to alkali‐stable, reversed‐phase Poros 20 beads followed by two degradation cycles and the eluted apoproteins were either separated by SDS gel electrophoresis or digested with trypsin prior to LC/ESI‐MS. We demonstrate on the peptide and protein level that even complex glycan moieties are removed under mild conditions with only minimal effects on structural integrity of the peptide core by fragmentation, dehydration or by racemization of the Lys/Arg residues. The protocol is applicable on gel‐immobilized glycoproteins after SDS gel electrophoresis. Conversion of O‐glycoproteins into their corresponding apoproteins should result in facilitated accessibility of tryptic cleavage sites, increase the numbers of peptide fragments, and accordingly enhance protein coverage and identification rates within the subproteome of mucin‐type O‐glycoproteins. 相似文献
8.
蛋白质糖基化修饰的鉴定是蛋白质翻译后修饰分析中最具挑战性的任务之一,近几年尤其受到关注.快速发展的质谱技术为规模化的蛋白质糖基化修饰研究提供了有效的手段.与其他基于质谱技术的翻译后修饰鉴定相比,糖基化鉴定的难点在于糖链是大分子而且存在微观不均一性,另外糖链本身可以在串联质谱中碎裂且与肽段的碎裂规律不同,导致蛋白质组学的质谱解析方法和软件难以完整地鉴定肽段序列和糖链结构.完整N-糖肽的鉴定是糖基化分析的热点内容之一,针对N-糖肽的鉴定,近年来,人们开发了多种多样的质谱解析方法,其中包括用N-糖酰胺酶切除糖链后鉴定N-糖基化位点的方法、基于电子转运裂解的糖肽肽段鉴定、基于高能碰撞裂解与电子转运裂解联用或碰撞诱导裂解与三级谱联用的完整N-糖肽鉴定等等.本文对这些质谱解析方法进行了整理和综述,简要指出了目前完整糖肽鉴定软件存在的一些不足,展望了未来的发展方向. 相似文献
9.
Identification of mucin-type O-glycosylated proteins with known functions in model organisms like Drosophila could provide keys to elucidate functions of the O-glycan moiety and proteomic analyses of O-glycoproteins in higher eukaryotes remain a challenge due to structural heterogeneity and a lack of efficient tools for their specific isolation. Here we report a strategy to evaluate the O-glycosylation potential of the embryonal hemocyte-like Drosophila Schneider 2 (S2) cell line by expression of recombinant glycosylation probes derived from tandem repeats of the human mucin MUC1 or of the Drosophila salivary gland protein Sgs1. We obtained evidence that mucin-type O-glycosylation in S2 cells grown under serum-free conditions is restricted to the Tn-antigen (GalNAcalpha-Ser/Thr) and the T-antigen (Galbeta1-3GalNAcalpha-Ser/Thr) and this structural homogeneity enables unique glycoproteomic strategies. We present a label-free strategy for the isolation, profiling and analysis of O-glycosylated proteins consisting of serial lectin affinity capture, 2-DE-based glycoprotein analysis by O-glycan specific mAbs and protein identification by MALDI-MS. Protein identity and O-glycosylation was confirmed by ESI-MS/MS with detection of diagnostic sugar oxonium-ion fragments. Using this strategy, we established 2-D reference maps and identified 21 secreted and intracellular mucin-type O-glycoproteins. Our results show that Drosophila S2 cells express O-glycoproteins involved in a wide range of biological functions including proteins of the extracellular matrix (Laminin gamma-chain, Peroxidasin and Glutactin), pathogen recognition proteins (Gnbp1), stress response proteins (Glycoprotein 93), secreted proteases (Matrix-metalloprotease 1 and various trypsin-like serine proteases), protease inhibitors (Serpin 27 A) and proteins of unknown function. 相似文献
10.
Bojing Zhu Jiechen Shen Ting Zhao Haihai Jiang Tianran Ma Jie Zhang Liuyi Dang Ni Gao Yingwei Hu Yi Shi Shisheng Sun 《Proteomics》2019,19(3)
Influenza H1N1 virus has posed a serious threat to human health. The glycosylation of neuraminidase (NA) could affect the infectivity and virulence of the influenza virus, but detailed site‐specific glycosylation information of NA is still missing. In this study, intact glycopeptide analysis is performed on an influenza NA (A/H1N1/California/2009) that is expressed in human 293T and insect Hi‐5 cells. The data indicate that three of four potential N‐linked glycosylation sites are glycosylated, including one partial glycosylation site from both cell lines. The NA expressed in human cells has more complex glycans than that of insect cells, suggesting the importance of selecting an appropriate expression system for the production of functional glycoproteins. Different types of glycans are identified from different glycosites of NA expressed in human cells, which implies the site‐dependence of glycosylation on NA. This study provides valuable information for the research of influenza virus as well as the functions of viral protein glycosylation. 相似文献
11.
James DC 《Cytotechnology》1996,22(1-3):17-24
The advent of new technologies for analysis of biopolymers by mass spectrometry has revolutionised strategies for recombinant protein characterization. The principal recent developments have been matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Using these tools, accurate molecular mass determinations can now be obtained routinely-often using minute (picomole-femtomole) quantities of protein or protein fragments. These techniques have proved indispensible for detailed characterization of the post-translational modifications of recombinant proteins produced by eukaryotic systems. Glycosylation is arguably the most important and complex of these modifications and has prompted widespread use of these new techniques. In this mini-review article I describe recent advances in the use of mass spectrometry for analysis of recombinant glycoproteins. 相似文献
12.
Posttranslational regulation of proteins via protein phosphorylation is one of the major means of protein regulation. Phosphorylation is a very rapid and reversible method of changing the function of proteins. Detection of phosphorylated proteins and the identification of phosphorylation sites are necessary to molecularly link specific phosphorylated events with change in phosphoprotein function. Mass Spectrometry (MS) has become the methodology of choice for phosphosite identification. Here we review current approaches including sample separation and enrichment techniques (SDS-PAGE, immunoprecipitation, metal-assisted enrichment, strong cation exchange, dendrimer capture), quantitative MS analysis methods (SILAC, iTRAQ, AQUA), and the application of recently developed methods including electron transfer dissociation ionization and “top-down” proteomics to phosphoprotein analysis. 相似文献
13.
The characterization of glycosylation is required for many protein therapeutics. The emergence of antibody and antibody-like molecules with multiple glycan attachment sites has rendered glycan analysis increasingly more complicated. Reliance on site-specific glycopeptide analysis is therefore necessary to fully analyze multi-glycosylated biotherapeutics. Established glycopeptide methodologies have generally utilized a priori knowledge of the glycosylation states of the investigated protein(s), database searching of results generated from data-dependent liquid chromatography–tandem mass spectrometry workflows, and extracted ion quantitation of the individual identified species. However, the inherent complexity of glycosylation makes predicting all glycoforms on all glycosylation sites extremely challenging, if not impossible. That is, only the “knowns” are assessed. Here, we describe an agnostic methodology to qualitatively and quantitatively assess both “known” and “unknown” site-specific glycosylation for biotherapeutics that contain multiple glycosylation sites. The workflow uses data-independent, all ion fragmentation to generate glycan oxonium ions, which are then extracted across the entirety of the chromatographic timeline to produce a glycan-specific “fingerprint” of the glycoprotein sample. We utilized both HexNAc and sialic acid oxonium ion profiles to quickly assess the presence of Fab glycosylation in a therapeutic monoclonal antibody, as well as for high-throughput comparisons of multi-glycosylated protein drugs derived from different clones to a reference product. An automated method was created to rapidly assess oxonium profiles between samples, and to provide a quantitative assessment of similarity. 相似文献
14.
Analysis of protein glycosylation by mass spectrometry 总被引:1,自引:0,他引:1
Bo Nilsson 《Molecular biotechnology》1994,2(3):243-280
There is a growing pharmaceutical market for protein-based drugs for use in therapy and diagnosis. The rapid developments
in molecular and cell biology have resulted in production of expression systems for manufacturing of recombinant proteins
and monoclonal antibodies. These proteins are glycosylated when expressed in cell systems with glycosylation ability. For
glycoproteins intended for therapeutic administration it is important to have knowledge about the structure of the carbohydrate
side chains to avoid cell systems that produce structures, which in humans can cause undesired reactions, e.g., immunological
and unfavorable serum clearance rate. Structural analysis of glycoprotein oligosaccharides requires sophisticated instruments
like mass spectrometers and nuclear magnetic resonance spectrometers. However, before the structural analysis can be conducted,
the carbohydrate chains have to be released from the protein and purified to homogeneity, and this is often the most time-consuming
step. Mass spectrometry has played and still plays an important role in analysis of protein glycosylation. The superior sensitivity
compared to other spectroscopic methods is its main asset. Structural analysis of carbohydrates faces several problems, however,
due to the chemical nature of the constituent monosaccharide residues. For oligosaccharides or glycoconjugates, the structural
information from mass spectrometry is essentially limited to monosaccharide sequence, molecular weight, and only in exceptional
cases glycosidic linkage positions can be obtained. In order to completely establish an oligosaccharide structure, several
other structural parameters have to be determined, e.g., linkage positions, anomeric configuration and identification of the
monosaccharide building blocks. One way to address some of these problems is to work on chemical pretreatment of the glycoconjugate,
to specifically modify the carbohydrate chain. In order to introduce specific modifications, we have used periodate oxidation
and trifluoroacetolysis with the objective of determining glycosidic linkage positions by mass spectrometry. 相似文献
15.
Ronnie P.‐A. Berntsson Nur Alia Oktaviani Fabrizia Fusetti Andy‐Mark W. H. Thunnissen Bert Poolman Dirk‐Jan Slotboom 《Protein science : a publication of the Protein Society》2009,18(5):1121-1127
Lactococcus lactis is a promising host for (membrane) protein overproduction. Here, we describe a protocol for incorporation of selenomethionine (SeMet) into proteins expressed in L. lactis. Incorporation efficiencies of SeMet in the membrane protein complex OpuA (an ABC transporter) and the soluble protein OppA, both from L. lactis, were monitored by mass spectrometry. Both proteins incorporated SeMet with high efficiencies (>90%), which greatly extends the usefulness of the expression host L. lactis for X‐ray crystallography purposes. The crystal structure of ligand‐free OppA was determined at 2.4 Å resolution by a semiautomatic approach using selenium single‐wavelength anomalous diffraction phasing. 相似文献
16.
Daniel Ayoub Wolfgang Jabs Anja Resemann Waltraud Evers Catherine Evans Laura Main Carsten Baessmann Elsa Wagner-Rousset Detlev Suckau Alain Beck 《MABS-AUSTIN》2013,5(5):699-710
The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab’s glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products. 相似文献
17.
Klisch K Jeanrond E Pang PC Pich A Schuler G Dantzer V Kowalewski MP Dell A 《Glycobiology》2008,18(1):42-52
Pregnancy-associated glycoproteins (PAGs) are major secretory proteins of trophoblast cells in ruminants. Binucleate trophoblast giant cells (BNCs) store these proteins in secretory granules and release them into the maternal organism after fusion with maternal uterine epithelial cells. By matrix assisted laser desorption ionisation-mass spectrometry (MALDI-MS) analysis and linkage analysis, we show that by far, the most abundant N-glycan of PAGs in midpregnancy is a tetraantennary core-fucosylated structure with a bisecting N-acetylglucosamine (GlcNAc). All four antennae consist of the Sd(a)-antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc-). Immunohistochemistry with the mono- clonal antibody CT1, which recognizes the Sd(a)-antigen, shows that BNC granules contain the Sd(a)-antigen from gestation day (gd) 32 until a few days before parturition. Lectin histochemistry with Maackia amurensis lectin (MAL), which binds to alpha2-3sialylated lactosamine, shows that BNC granules are MAL-positive prior to gd 32 and also at parturition. The observed tetraantennary glycan is a highly unusual structure, since during the synthesis of N-glycans, the insertion of a bisecting GlcNAc inhibits the activity of the GlcNAc-transferases that leads to tri- and tetraantennary glycans. The study defines the substantial changes of PAG N-glycosylation in the course of pregnancy. This promotes the hypothesis that PAGs may have different carbohydrate-mediated functions at different stages of pregnancy. 相似文献
18.
Ronnie P‐A Berntsson Mark K Doeven Fabrizia Fusetti Ria H Duurkens Durba Sengupta Siewert‐Jan Marrink Andy‐Mark W H Thunnissen Bert Poolman Dirk‐Jan Slotboom 《The EMBO journal》2009,28(9):1332-1340
Oligopeptide‐binding protein A (OppA) from Lactococcus lactis binds peptides of an exceptionally wide range of lengths (4–35 residues), with no apparent sequence preference. Here, we present the crystal structures of OppA in the open‐ and closed‐liganded conformations. The structures directly explain the protein's phenomenal promiscuity. A huge cavity allows binding of very long peptides, and a lack of constraints for the position of the N and C termini of the ligand is compatible with binding of peptides with varying lengths. Unexpectedly, the peptide's amino‐acid composition (but not the exact sequence) appears to have a function in selection, with a preference for proline‐rich peptides containing at least one isoleucine. These properties can be related to the physiology of the organism: L. lactis is auxotrophic for branched chain amino acids and favours proline‐rich caseins as a source of amino acids. We propose a new mechanism for peptide selection based on amino‐acid composition rather than sequence. 相似文献
19.
Hiroaki Nakagawa Noriko Takahashi Kazuhisa Fujikawa Yoshiya Kawamura Masaki Iino Hiroyuki Takeya Hiroyuki Ogawa Koji Suzuki 《Glycoconjugate journal》1995,12(2):173-181
Human blood coagulation factor X has two N-linked oligosaccharides at Asn39 and Asn49 residues and two O-linked oligosaccharides at Thr17 and Thr29 residues in the region of the factorX activationpeptide (XAP) which is cleaved off during its activation by factor IXa. We determined the structure of oligosaccharides in the XAP region of human factor X. Four glycopeptides each containing a glycosylation site were isolated by digestion of XAP with endoproteinase Asp-N followed by reversed-phase HPLC. N-linked oligosaccharides released from the glycopeptides by glycoamidase A digestion were derivatized with 2-aminopyridine. Pyridylamino(PA)-oligosaccharides were separated by HPLC into neutral and sialyl oligosaccharides using an anion-exchange column. Structures of oligosaccharides and their contents at each glycosylation site were determined by a two-dimensional sugar mapping method. The contents of the neutral oligosaccharides at Asn39 and Asn49 residues were 32.5% and 30.0%, respectively. Six neutral and twelve monosialyl oligosaccharides isolated from both N-linked glycosylation sites showed similar elution profiles composed of bi-, tri-and tetra-antennary complex type oligosaccharides. The predominant component in neutral oligosaccharides was biantennary without a fucose residue. Two major monosialyl oligosaccharides were also biantennary without fucose and with a Neu5Ac-26 residue. In addition, the structures of O-linked oligosaccharides at Thr17 and Thr29 residues were suggested to be disialylated Gal/3GalNAc sequences by their component analyses.Abbreviations Gal
d-galactose
- GlcNAc
N-acetyl-d-glucosamine
- Man
d-mannose
- HPLC
high-performance liquid chromatography
- NDV
Newcastle disease virus
- Neu5Ac
5-N-acetylneuraminic acid
- ODS
octadecylsilyl
- PA
pyridylamino
- RVV-X
Russell's viper venom factor X activator
- TBS
Tris-buffered saline
- XAP
factor X activation peptide. 相似文献
20.
C. Smal D. Vertommen L. Bertrand M. H. Rider E. Van Den Neste F. Bontemps 《Nucleosides, nucleotides & nucleic acids》2013,32(9-11):1141-1146
Compelling evidence suggests that deoxycytidine kinase (dCK), a key enzyme in the salvage of deoxyribonucleosides and in the activation of clinically relevant nucleoside analogues, can be regulated by reversible phosphorylation. In this study, we show that dCK overexpressed in HEK-293T cells was labelled after incubation of the cells with [32P]orthophosphate. Tandem mass spectrometry allowed the identification of 4 in vivo phosphorylation sites, Thr3, Ser11, Ser15, and Ser74. These results provide the first evidence that dCK is constitutively multiphosphorylated in intact cells. In addition, site-directed mutagenesis demonstrated that phosphorylation of Ser74, the major in vivo phosphorylation site, is crucial for dCK activity. 相似文献