首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many membrane proteins, the determination of their topology remains a challenge for methods like X‐ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP‐Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge‐based potential functions and agreement with the EPR data and a knowledge‐based energy function. Twenty‐nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. Proteins 2015; 83:1947–1962. © 2015 Wiley Periodicals, Inc  相似文献   

2.
Small angle X‐ray scattering (SAXS) is an experimental technique used for structural characterization of macromolecules in solution. Here, we introduce BCL::SAXS—an algorithm designed to replicate SAXS profiles from rigid protein models at different levels of detail. We first show our derivation of BCL::SAXS and compare our results with the experimental scattering profile of hen egg white lysozyme. Using this protein we show how to generate SAXS profiles representing: (1) complete models, (2) models with approximated side chain coordinates, and (3) models with approximated side chain and loop region coordinates. We evaluated the ability of SAXS profiles to identify a correct protein topology from a non‐redundant benchmark set of proteins. We find that complete SAXS profiles can be used to identify the correct protein by receiver operating characteristic (ROC) analysis with an area under the curve (AUC) > 99%. We show how our approximation of loop coordinates between secondary structure elements improves protein recognition by SAχS for protein models without loop regions and side chains. Agreement with SAXS data is a necessary but not sufficient condition for structure determination. We conclude that experimental SAXS data can be used as a filter to exclude protein models with large structural differences from the native. Proteins 2015; 83:1500–1512. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Protein structure refinement aims to perform a set of operations given a predicted structure to improve model quality and accuracy with respect to the native in a blind fashion. Despite the numerous computational approaches to the protein refinement problem reported in the previous three CASPs, an overwhelming majority of methods degrade models rather than improve them. We initially developed a method tested using blind predictions during CASP10 which was officially ranked in 5th place among all methods in the refinement category. Here, we present Princeton_TIGRESS, which when benchmarked on all CASP 7,8,9, and 10 refinement targets, simultaneously increased GDT_TS 76% of the time with an average improvement of 0.83 GDT_TS points per structure. The method was additionally benchmarked on models produced by top performing three‐dimensional structure prediction servers during CASP10. The robustness of the Princeton_TIGRESS protocol was also tested for different random seeds. We make the Princeton_TIGRESS refinement protocol freely available as a web server at http://atlas.princeton.edu/refinement . Using this protocol, one can consistently refine a prediction to help bridge the gap between a predicted structure and the actual native structure. Proteins 2014; 82:794–814. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
EM-Fold was used to build models for nine proteins in the maps of GroEL (7.7 ? resolution) and ribosome (6.4 ? resolution) in the ab initio modeling category of the 2010 cryo-electron microscopy modeling challenge. EM-Fold assembles predicted secondary structure elements (SSEs) into regions of the density map that were identified to correspond to either α-helices or β-strands. The assembly uses a Monte Carlo algorithm where loop closure, density-SSE length agreement, and strength of connecting density between SSEs are evaluated. Top-scoring models are refined by translating, rotating, and bending SSEs to yield better agreement with the density map. EM-Fold produces models that contain backbone atoms within SSEs only. The RMSD values of the models with respect to native range from 2.4 to 3.5 ? for six of the nine proteins. EM-Fold failed to predict the correct topology in three cases. Subsequently, Rosetta was used to build loops and side chains for the very best scoring models after EM-Fold refinement. The refinement within Rosetta's force field is driven by a density agreement score that calculates a cross-correlation between a density map simulated from the model and the experimental density map. All-atom RMSDs as low as 3.4 ? are achieved in favorable cases. Values above 10.0 ? are observed for two proteins with low overall content of secondary structure and hence particularly complex loop modeling problems. RMSDs over residues in secondary structure elements range from 2.5 to 4.8 ?.  相似文献   

5.
Biophysical forcefields have contributed less than originally anticipated to recent progress in protein structure prediction. Here, we have investigated the selectivity of a recently developed all‐atom free‐energy forcefield for protein structure prediction and quality assessment (QA). Using a heuristic method, but excluding homology, we generated decoy‐sets for all targets of the CASP7 protein structure prediction assessment with <150 amino acids. The decoys in each set were then ranked by energy in short relaxation simulations and the best low‐energy cluster was submitted as a prediction. For four of nine template‐free targets, this approach generated high‐ranking predictions within the top 10 models submitted in CASP7 for the respective targets. For these targets, our de‐novo predictions had an average GDT_S score of 42.81, significantly above the average of all groups. The refinement protocol has difficulty for oligomeric targets and when no near‐native decoys are generated in the decoy library. For targets with high‐quality decoy sets the refinement approach was highly selective. Motivated by this observation, we rescored all server submissions up to 200 amino acids using a similar refinement protocol, but using no clustering, in a QA exercise. We found an excellent correlation between the best server models and those with the lowest energy in the forcefield. The free‐energy refinement protocol may thus be an efficient tool for relative QA and protein structure prediction. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
M. F. Thorpe  S. Banu Ozkan 《Proteins》2015,83(12):2279-2292
The most successful protein structure prediction methods to date have been template‐based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug‐design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr‐REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native‐like structures from a template and to provide a set of persistent contacts to be employed during re‐folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. Proteins 2015; 83:2279–2292. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Protein structure refinement is the challenging problem of operating on any protein structure prediction to improve its accuracy with respect to the native structure in a blind fashion. Although many approaches have been developed and tested during the last four CASP experiments, a majority of the methods continue to degrade models rather than improve them. Princeton_TIGRESS (Khoury et al., Proteins 2014;82:794–814) was developed previously and utilizes separate sampling and selection stages involving Monte Carlo and molecular dynamics simulations and classification using an SVM predictor. The initial implementation was shown to consistently refine protein structures 76% of the time in our own internal benchmarking on CASP 7‐10 targets. In this work, we improved the sampling and selection stages and tested the method in blind predictions during CASP11. We added a decomposition of physics‐based and hybrid energy functions, as well as a coordinate‐free representation of the protein structure through distance‐binning distances to capture fine‐grained movements. We performed parameter estimation to optimize the adjustable SVM parameters to maximize precision while balancing sensitivity and specificity across all cross‐validated data sets, finding enrichment in our ability to select models from the populations of similar decoys generated for targets in CASPs 7‐10. The MD stage was enhanced such that larger structures could be further refined. Among refinement methods that are currently implemented as web‐servers, Princeton_TIGRESS 2.0 demonstrated the most consistent and most substantial net refinement in blind predictions during CASP11. The enhanced refinement protocol Princeton_TIGRESS 2.0 is freely available as a web server at http://atlas.engr.tamu.edu/refinement/ . Proteins 2017; 85:1078–1098. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Misura KM  Baker D 《Proteins》2005,59(1):15-29
Achieving atomic level accuracy in de novo structure prediction presents a formidable challenge even in the context of protein models with correct topologies. High-resolution refinement is a fundamental test of force field accuracy and sampling methodology, and its limited success in both comparative modeling and de novo prediction contexts highlights the limitations of current approaches. We constructed four tests to identify bottlenecks in our current approach and to guide progress in this challenging area. The first three tests showed that idealized native structures are stable under our refinement simulation conditions and that the refinement protocol can significantly decrease the root mean square deviation (RMSD) of perturbed native structures. In the fourth test we applied the refinement protocol to de novo models and showed that accurate models could be identified based on their energies, and in several cases many of the buried side chains adopted native-like conformations. We also showed that the differences in backbone and side-chain conformations between the refined de novo models and the native structures are largely localized to loop regions and regions where the native structure has unusual features such as rare rotamers or atypical hydrogen bonding between beta-strands. The refined de novo models typically have higher energies than refined idealized native structures, indicating that sampling of local backbone conformations and side-chain packing arrangements in a condensed state is a primary obstacle.  相似文献   

9.
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low‐resolution predicted models to high‐resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two‐step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic‐level energy minimization on the optimized model using a composite physics and knowledge‐based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Hu C  Koehl P  Max N 《Proteins》2011,79(10):2828-2843
The three‐dimensional structure of a protein is organized around the packing of its secondary structure elements. Predicting the topology and constructing the geometry of structural motifs involving α‐helices and/or β‐strands are therefore key steps for accurate prediction of protein structure. While many efforts have focused on how to pack helices and on how to sample exhaustively the topologies and geometries of multiple strands forming a β‐sheet in a protein, there has been little progress on generating native‐like packings of helices on sheets. We describe a method that can generate the packing of multiple helices on a given β‐sheet for αβα sandwich type protein folds. This method mines the results of a statistical analysis of the conformations of αβ2 motifs in protein structures to provide input values for the geometric attributes of the packing of a helix on a sheet. It then proceeds with a geometric builder that generates multiple arrangements of the helices on the sheet of interest by sampling through these values and performing consistency checks that guarantee proper loop geometry between the helices and the strands, minimal number of collisions between the helices, and proper formation of a hydrophobic core. The method is implemented as a module of ProteinShop. Our results show that it produces structures that are within 4–6 Å RMSD of the native one, regardless of the number of helices that need to be packed, though this number may increase if the protein has several helices between two consecutive strands in the sequence that pack on the sheet formed by these two strands. Proteins 2011; Published 2011 Wiley‐Liss, Inc.  相似文献   

11.
Yunqi Li  Yang Zhang 《Proteins》2009,76(3):665-676
Protein structure prediction approaches usually perform modeling simulations based on reduced representation of protein structures. For biological utilizations, it is an important step to construct full atomic models from the reduced structure decoys. Most of the current full atomic model reconstruction procedures have defects which either could not completely remove the steric clashes among backbone atoms or generate final atomic models with worse topology similarity relative to the native structures than the reduced models. In this work, we develop a new protocol, called REMO, to generate full atomic protein models by optimizing the hydrogen‐bonding network with basic fragments matched from a newly constructed backbone isomer library of solved protein structures. The algorithm is benchmarked on 230 nonhomologous proteins with reduced structure decoys generated by I‐TASSER simulations. The results show that REMO has a significant ability to remove steric clashes, and meanwhile retains good topology of the reduced model. The hydrogen‐bonding network of the final models is dramatically improved during the procedure. The REMO algorithm has been exploited in the recent CASP8 experiment which demonstrated significant improvements of the I‐TASSER models in both atomic‐level structural refinement and hydrogen‐bonding network construction. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
In protein structures, the fold is described according to the spatial arrangement of secondary structure elements (SSEs: α‐helices and β‐strands) and their connectivity. The connectivity or the pattern of links among SSEs is one of the most important factors for understanding the variety of protein folds. In this study, we introduced the connectivity strings that encode the connectivities by using the types, positions, and connections of SSEs, and computationally enumerated all the connectivities of two‐layer αβ sandwiches. The calculated connectivities were compared with those in natural proteins determined using MICAN, a nonsequential structure comparison method. For 2α‐4β, among 23,000 of all connectivities, only 48 were free from irregular connectivities such as loop crossing. Of these, only 20 were found in natural proteins and the superfamilies were biased toward certain types of connectivities. A similar disproportional distribution was confirmed for most of other spatial arrangements of SSEs in the two‐layer αβ sandwiches. We found two connectivity rules that explain the bias well: the abundances of interlayer connecting loops that bridge SSEs in the distinct layers; and nonlocal β‐strand pairs, two spatially adjacent β‐strands located at discontinuous positions in the amino acid sequence. A two‐dimensional plot of these two properties indicated that the two connectivity rules are not independent, which may be interpreted as a rule for the cooperativity of proteins.  相似文献   

13.
Park H  Seok C 《Proteins》2012,80(8):1974-1986
Contemporary template-based modeling techniques allow applications of modeling methods to vast biological problems. However, they tend to fail to provide accurate structures for less-conserved local regions in sequence even when the overall structure can be modeled reliably. We call these regions unreliable local regions (ULRs). Accurate modeling of ULRs is of enormous value because they are frequently involved in functional specificity. In this article, we introduce a new method for modeling ULRs in template-based models by employing a sophisticated loop modeling technique. Combined with our previous study on protein termini, the method is applicable to refinement of both loop and terminus ULRs. A large-scale test carried out in a blind fashion in CASP9 (the 9th Critical Assessment of techniques for protein structure prediction) shows that ULR structures are improved over initial template-based models by refinement in more than 70% of the successfully detected ULRs. It is also notable that successful modeling of several long ULRs over 12 residues is achieved. Overall, the current results show that a careful application of loop and terminus modeling can be a promising tool for model refinement in template-based modeling.  相似文献   

14.
When experimental protein NMR data are too sparse to apply traditional structure determination techniques, de novo protein structure prediction methods can be leveraged. Here, we describe the incorporation of NMR restraints into the protein structure prediction algorithm BCL::Fold. The method assembles discreet secondary structure elements using a Monte Carlo sampling algorithm with a consensus knowledge‐based energy function. New components were introduced into the energy function to accommodate chemical shift, nuclear Overhauser effect, and residual dipolar coupling data. In particular, since side chains are not explicitly modeled during the minimization process, a knowledge based potential was created to relate experimental side chain proton–proton distances to Cβ–Cβ distances. In a benchmark test of 67 proteins of known structure with the incorporation of sparse NMR restraints, the correct topology was sampled in 65 cases, with an average best model RMSD100 of 3.4 ± 1.3 Å versus 6.0 ± 2.0 Å produced with the de novo method. Additionally, the correct topology is present in the best scoring 1% of models in 61 cases. The benchmark set includes both soluble and membrane proteins with up to 565 residues, indicating the method is robust and applicable to large and membrane proteins that are less likely to produce rich NMR datasets. Proteins 2014; 82:587–595. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
We describe a method that can thoroughly sample a protein conformational space given the protein primary sequence of amino acids and secondary structure predictions. Specifically, we target proteins with β‐sheets because they are particularly challenging for ab initio protein structure prediction because of the complexity of sampling long‐range strand pairings. Using some basic packing principles, inverse kinematics (IK), and β‐pairing scores, this method creates all possible β‐sheet arrangements including those that have the correct packing of β‐strands. It uses the IK algorithms of ProteinShop to move α‐helices and β‐strands as rigid bodies by rotating the dihedral angles in the coil regions. Our results show that our approach produces structures that are within 4–6 Å RMSD of the native one regardless of the protein size and β‐sheet topology although this number may increase if the protein has long loops or complex α‐helical regions. Proteins 2010. © Published 2009 Wiley‐Liss, Inc.  相似文献   

16.
In recent years in silico protein structure prediction reached a level where fully automated servers can generate large pools of near‐native structures. However, the identification and further refinement of the best structures from the pool of models remain problematic. To address these issues, we have developed (i) a target‐specific selective refinement (SR) protocol; and (ii) molecular dynamics (MD) simulation based ranking (SMDR) method. In SR the all‐atom refinement of structures is accomplished via the Rosetta Relax protocol, subject to specific constraints determined by the size and complexity of the target. The best‐refined models are selected with SMDR by testing their relative stability against gradual heating through all‐atom MD simulations. Through extensive testing we have found that Mufold‐MD, our fully automated protein structure prediction server updated with the SR and SMDR modules consistently outperformed its previous versions. Proteins 2015; 83:1823–1835. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Zhu J  Xie L  Honig B 《Proteins》2006,65(2):463-479
In this article, we present an iterative, modular optimization (IMO) protocol for the local structure refinement of protein segments containing secondary structure elements (SSEs). The protocol is based on three modules: a torsion-space local sampling algorithm, a knowledge-based potential, and a conformational clustering algorithm. Alternative methods are tested for each module in the protocol. For each segment, random initial conformations were constructed by perturbing the native dihedral angles of loops (and SSEs) of the segment to be refined while keeping the protein body fixed. Two refinement procedures based on molecular mechanics force fields - using either energy minimization or molecular dynamics - were also tested but were found to be less successful than the IMO protocol. We found that DFIRE is a particularly effective knowledge-based potential and that clustering algorithms that are biased by the DFIRE energies improve the overall results. Results were further improved by adding an energy minimization step to the conformations generated with the IMO procedure, suggesting that hybrid strategies that combine both knowledge-based and physical effective energy functions may prove to be particularly effective in future applications.  相似文献   

18.
Electron density maps of membrane proteins or large macromolecular complexes are frequently only determined at medium resolution between 4?? and 10??, either by cryo-electron microscopy or X-ray crystallography. In these density maps, the general arrangement of secondary structure elements (SSEs) is revealed, whereas their directionality and connectivity remain elusive. We demonstrate that the topology of proteins with up to 250 amino acids can be determined from such density maps when combined with a computational protein folding protocol. Furthermore, we accurately reconstruct atomic detail in loop regions and amino acid side chains not visible in the experimental data. The EM-Fold algorithm assembles the SSEs de novo before atomic detail is added using Rosetta. In a benchmark of 27 proteins, the protocol consistently and reproducibly achieves models with root mean square deviation values <3??.  相似文献   

19.
The tertiary structures of protein complexes provide a crucial insight about the molecular mechanisms that regulate their functions and assembly. However, solving protein complex structures by experimental methods is often more difficult than single protein structures. Here, we have developed a novel computational multiple protein docking algorithm, Multi‐LZerD, that builds models of multimeric complexes by effectively reusing pairwise docking predictions of component proteins. A genetic algorithm is applied to explore the conformational space followed by a structure refinement procedure. Benchmark on eleven hetero‐multimeric complexes resulted in near‐native conformations for all but one of them (a root mean square deviation smaller than 2.5Å). We also show that our method copes with unbound docking cases well, outperforming the methodology that can be directly compared with our approach. Multi‐LZerD was able to predict near‐native structures for multimeric complexes of various topologies.Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

20.
CASP (critical assessment of structure prediction) assesses the state of the art in modeling protein structure from amino acid sequence. The most recent experiment (CASP13 held in 2018) saw dramatic progress in structure modeling without use of structural templates (historically “ab initio” modeling). Progress was driven by the successful application of deep learning techniques to predict inter-residue distances. In turn, these results drove dramatic improvements in three-dimensional structure accuracy: With the proviso that there are an adequate number of sequences known for the protein family, the new methods essentially solve the long-standing problem of predicting the fold topology of monomeric proteins. Further, the number of sequences required in the alignment has fallen substantially. There is also substantial improvement in the accuracy of template-based models. Other areas—model refinement, accuracy estimation, and the structure of protein assemblies—have again yielded interesting results. CASP13 placed increased emphasis on the use of sparse data together with modeling and chemical crosslinking, SAXS, and NMR all yielded more mature results. This paper summarizes the key outcomes of CASP13. The special issue of PROTEINS contains papers describing the CASP13 assessments in each modeling category and contributions from the participants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号