首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysine deacetylases (KDACs) are enzymes that reverse the post-translational modification of lysine acetylation. Recently, a series of N-acetylthioureas were synthesized and reported to enhance the activity of KDAC8 with a fluorogenic substrate. To determine if the activation was general, we synthesized three of the most potent N-acetylthioureas and measured their effect with peptide substrates and the fluorogenic substrate under multiple reaction conditions and utilizing two enzyme purification approaches. No activation was observed for any of the three N-acetylthioureas under any assayed conditions. Further characterization of KDAC8 kinetics with the fluorogenic substrate yielded a kcat/KM of 164 ± 17 in the absence of any N-acetylthioureas. This catalytic efficiency is comparable to or higher than that previously reported when KDAC8 was activated by the N-acetylthioureas, suggesting that the previously reported activation effect may be due to use of an enzyme preparation that contains a large fraction of inactive enzyme. Further characterization with a less active preparation and additional substrates leads us to conclude that N-acetylthioureas are not true activators of KDAC8 and only increase activity if the enzyme preparation is below the maximal basal activity.  相似文献   

2.
Gurard-Levin ZA  Mrksich M 《Biochemistry》2008,47(23):6242-6250
This paper introduces a flexible assay for characterizing the activities of the histone deacetylase enzymes. The approach combines mass spectrometry with self-assembled monolayers that present acetylated peptides and enables a label-free and one-step assay of this biochemical activity. The assay was used to characterize the activity of HDAC8 toward peptides taken from the N-terminal tail of the H4 histone and reveals that a distal region of the peptide substrate interacts with the deacetylase at an exosite and contributes to the activity of the substrate. Specifically, a peptide corresponding to residues 8-19 of H4 and having lysine 12 acetylated is an active substrate, but removal of the KRHR (residues 16-19) sequence abolishes activity. Mutation of glycine 11 to arginine in the peptide lacking the KRHR sequence restores activity, demonstrating that both local and distal sequences act synergistically to regulate the activity of the HDAC. Assays with peptides bearing multiply acetylated residues, but in which each acetyl group is isotopically labeled, permit studies of the processive deacetylation of peptides. Peptide substrates having an extended sequence that includes K20 were used to demonstrate that methylation of this residue directly affects HDAC8 activity at K12. This work provides a mechanistic basis for the regulation of HDAC activities by distal sequences and may contribute to studies aimed at evaluating the role of the histone code in regulating gene expression.  相似文献   

3.
Acetyltransferase enzymes target specific lysine residues in substrate proteins. While the list of histone and nonhistone substrates is growing, the mechanisms of substrate selection remain unclear. Here, we describe a mass spectrometric approach to examine the site selection of the acetyltransferase p300 in the HIV-1 protein Tat. Tat is acetylated by p300 at a single lysine (K50) within its basic RNA-binding domain. To determine the sequence requirements for K50 recognition within this domain, we synthesized mixtures of "degenerated" Tat peptides, in which one of the surrounding residues was substituted by all proteinogenic amino acids. Peptide mixtures were assembled based on nonoverlapping peptide masses and acetylated by p300 in a standard in vitro acetylation reaction. Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified amino acid substitutions that prevented acetylation by p300. This approach represents a fast and comprehensive screening method that was applied to the six surrounding residues of K50 in Tat. It can be applied to any known acetyltransferase substrate and might help to define consensus recognition sequences for individual acetyltransferase enzymes.  相似文献   

4.
Lysine propionylation is a recently identified post‐translational modification that has been observed in proteins such as p53 and histones and is thought to play a role similar to acetylation in modulating protein activity. Members of the sirtuin family of deacetylases have been shown to have depropionylation activity, although the way in which the sirtuin catalytic site accommodates the bulkier propionyl group is not clear. We have determined the 1.8 Å structure of a Thermotoga maritima sirtuin, Sir2Tm, bound to a propionylated peptide derived from p53. A comparison with the structure of Sir2Tm bound to an acetylated peptide shows that hydrophobic residues in the active site shift to accommodate the bulkier propionyl group. Isothermal titration calorimetry data show that Sir2Tm binds propionylated substrates more tightly than acetylated substrates, but kinetic assays reveal that the catalytic rate of Sir2Tm deacylation of propionyl‐lysine is slightly reduced to acetyl‐lysine. These results serve to broaden our understanding of the newly identified propionyl‐lysine modification and the ability of sirtuins to depropionylate, as well as deacetylate, substrates.  相似文献   

5.
Histone deacetylases catalyze the hydrolysis of an acetyl group from post-translationally modified acetyl-lysine residues in a wide variety of essential cellular proteins, including histones. Because these lysine modifications can alter the activity and properties of affected proteins, aberrant acetylation/deacetylation may contribute to disease states. Many fundamental questions regarding the substrate specificity and regulation of these enzymes have yet to be answered. Here, we optimize an enzyme-coupled assay to measure low micromolar concentrations of acetate, coupling acetate production to the formation of NADH (nicotinamide adenine dinucleotide, reduced form) that is measured by changes in either absorbance or fluorescence. Using this assay, we measured the steady-state kinetics of peptides representing the H4 histone tail and demonstrate that a C-terminally conjugated methylcoumarin enhances the catalytic efficiency of deacetylation catalyzed by cobalt(II)-bound histone deacetylase 8 [Co(II)–HDAC8] compared with peptide substrates containing a C-terminal carboxylate, amide, and tryptophan by 50-, 2.8-, and 2.3-fold, respectively. This assay can be adapted for a high-throughput screening format to identify HDAC substrates and inhibitors.  相似文献   

6.
SIR2 is a key regulator of the aging process in many model organisms. The human ortholog SIRT1 plays a pivotal role in the regulation of cellular differentiation, metabolism, cell cycle, and apoptosis. SIRT1 is an NAD(+)-dependent deacetylase, and its enzymatic activity may be regulated by cellular energy. There is a growing number of known SIRT1 substrates that contain epsilon-acetyl lysine but for which no obvious consensus sequence has been defined. In this study, we developed a novel unbiased method to identify deacetylase sequence specificity using oriented peptide libraries containing acetylated lysine. Following incubation with SIRT1, the subset of deacetylated peptides was selectively captured using a photocleavable N-hydroxysuccinimide (NHS)-biotin linker and streptavidin beads and analyzed using mass spectrometry and Edman degradation. These studies revealed that substrate recognition by SIRT1 does not depend on the amino acid sequence proximate to the acetylated lysine. This result brings us one step closer to understanding how SIRT1 and possibly other protein deacetylases chose their substrate.  相似文献   

7.
8.
HDACs (histone deacetylases) are enzymes that remove the acetyl moiety from N‐?‐acetylated lysine residues in histones and non‐histone proteins. In recent years, it has turned out that HDACs themselves are also subject to post‐translational modification. Such structural alterations can determine the stability, localization, activity and protein—protein interactions of HDACs. This subsequently affects the modification of their substrates and the co‐ordination of cellular signalling networks. Intriguingly, physiologically relevant non‐histone proteins are increasingly found to be deacetylated by HDACs, and aberrant deacetylase activity contributes to several severe human diseases. Targeting the catalytic activity of these enzymes and their post‐translational modifications are therefore attractive targets for therapeutical intervention strategies. To achieve this ambitious goal, details on the molecular mechanisms regulating post‐translational modifications of HDACs are required. This review summarizes aspects of the current knowledge on the biological role and enzymology of the phosphorylation, acetylation, ubiquitylation and sumoylation of HDACs.  相似文献   

9.
10.
Class III histone deacetylases (Sir2 or sirtuins) catalyze the NAD+-dependent conversion of acetyl-lysine residues to nicotinamide, 2'-O-acetyl-ADP-ribose (OAADPr), and deacetylated lysine. Class I and II HDACs utilize a different deacetylation mechanism, utilizing an active site zinc to direct hydrolysis of acetyl-lysine residues to lysine and acetate. Here, using ten acetyl-lysine analog peptides, we have probed the substrate binding pockets of sirtuins and investigated the catalytic differences among sirtuins and class I and II deacetylases. For the sirtuin Hst2, acetyl-lysine analog peptide binding correlated with the hydrophobic substituent parameter pi with a slope of -0.35 from a plot of log Kd versus pi. Interestingly, propionyl- and butyryl-lysine peptides were found to bind tighter to Hst2 compared with acetyl-lysine peptide and showed measurable rates of catalysis with Hst2, Sirt1, Sirt2, and Sirt3, suggesting propionyl- and butyryl-lysine proteins may be sirtuin substrates in vivo. Unique among the acetyl-lysine analog peptides examined, homocitrulline peptide produced ADP-ribose instead of the corresponding OAADPr analog. The electron-withdrawing nature of each acetyl analog had a profound impact on the deacylation rate between deacetylase classes. The rate of catalysis with the acetyl-lysine analog peptides varied over five orders of magnitude with the class III deacetylase Hst2, revealing a linear free energy relationship with a slope of -1.57 when plotted versus the Taft constant, sigma*. HDAC8, a class I deacetylase, displayed the opposite trend with a slope of +0.79. These results are applicable toward the development of selective substrates and other mechanistic probes of protein deacetylases.  相似文献   

11.
MS‐based analysis of the acetylproteome has highlighted a role for acetylation in a wide array of biological processes including gene regulation, metabolism, and cellular signaling. To date, anti‐acetyllysine antibodies have been used as the predominant affinity reagent for enrichment of acetyllysine‐containing peptides and proteins; however, these reagents suffer from high nonspecific binding and lot‐to‐lot variability. Bromodomains represent potential affinity reagents for acetylated proteins and peptides, given their natural role in recognition of acetylated sequence motifs in vivo. To evaluate their efficacy, we generated recombinant proteins representing all known yeast bromodomains. Bromodomain specificity for acetylated peptides was determined using degenerate peptide arrays, leading to the observation that different bromodomains display a wide array of binding specificities. Despite their relatively weak affinity, we demonstrate the ability of selected bromodomains to enrich acetylated peptides from a complex biological mixture prior to mass spectrometric analysis. Finally, we demonstrate a method for improving the utility of bromodomain enrichment for MS through engineering novel affinity reagents using combinatorial tandem bromodomain pairs.  相似文献   

12.
Mammalian sirtuins (SIRT1 through SIRT7) are members of a highly conserved family of NAD+-dependent protein deacetylases that function in metabolism, genome maintenance, and stress responses. Emerging evidence suggests that some sirtuins display substrate specificity toward other acyl groups attached to the lysine ϵ-amine. SIRT6 was recently reported to preferentially hydrolyze long-chain fatty acyl groups over acetyl groups. Here we investigated the catalytic ability of all sirtuins to hydrolyze 13 different acyl groups from histone H3 peptides, ranging in carbon length, saturation, and chemical diversity. We find that long-chain deacylation is a general feature of mammalian sirtuins, that SIRT1 and SIRT2 act as efficient decrotonylases, and that SIRT1, SIRT2, SIRT3, and SIRT4 can remove lipoic acid. These results provide new insight into sirtuin function and a means for cellular removal of an expanding list of endogenous lysine modifications. Given that SIRT6 is a poor deacetylase in vitro, but binds and prefers to hydrolyze long-chain acylated peptides, we hypothesize that binding of certain free fatty acids (FFAs) could stimulate deacetylation activity. Indeed, we demonstrate that several biologically relevant FFAs (including myristic, oleic, and linoleic acids) at physiological concentrations induce up to a 35-fold increase in catalytic efficiency of SIRT6 but not SIRT1. The activation mechanism is consistent with fatty acid inducing a conformation that binds acetylated H3 with greater affinity. Binding of long-chain FFA and myristoylated H3 peptide is mutually exclusive. We discuss the implications of discovering endogenous, small-molecule activators of SIRT6.  相似文献   

13.
Like phosphorylation, acetylation of lysine residues within a protein is considered a biologically relevant modification that controls the activity of target proteins. During stress of cells, massive protein acetylation takes place. Here, we show that p38 mitogen-activated protein kinase (MAPK), which controls many biological functions during stress, is reversibly acetylated by PCAF/p300 and HDAC3. We identified two acetylated lysine residues, K152 and K53, located in the substrate binding domain and in the ATP-binding pocket of p38, respectively. Acetylation of lysine 53 enhanced the activity of p38 by increasing its affinity for ATP binding. The enhanced acetylation and activation of p38 were found to be in parallel with reduced intracellular ATP levels in cardiomyocytes under stress, as well as in vivo models of cardiac hypertrophy. Thus, our data show, for the first time, that p38 activity is critically regulated by, in addition to phosphorylation, reversible acetylation of a lysine residue, which is conserved in other kinases, implying the possibility of a similar mechanism regulating their activity.  相似文献   

14.
Analogs of a synthetic heptapeptide substrate corresponding to the sequence around a phosphorylation site in histone H2B were used to assess the substrate specificity of cGMP-dependent protein kinase. cGMP-dependent kinase phosphorylated the oligopeptide Arg-Lys-Arg-Ser32-Arg-Lys-Glu with favorable kinetic parameters as compared to those for cAMP-dependent kinase (Glass, D. B., and Krebs, E. G. (1979) J. Biol. Chem. 254, 9728-9738). The contribution of each amino acid to the ability of the peptide to be phosphorylated by cGMP-dependent or cAMP-dependent kinase was studied by replacement of individual residues and evaluation of the kinetic constants of the substituted peptides. Peptides containing acetylated lysine residues or nitroarginine residues were poor substrates for both kinases. Substitution of either arginine 29 or lysine 30 with alanine increased the Km values and decreased the Vmax values for both kinases. Substitution of lysine 34 with alanine increased the Vmax values for both kinases but did not affect the Km values for either enzyme. Substitution of the phosphorylatable serine with a threonine residue greatly depressed the Vmax for both kinases. Peptides in which arginine 31 or arginine 33 were replaced by an alanine residue revealed several apparent differences in the specificity requirements between cGMP-dependent and cAMP-dependent kinases.  相似文献   

15.
Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.  相似文献   

16.
Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context.  相似文献   

17.
Poux AN  Marmorstein R 《Biochemistry》2003,42(49):14366-14374
Histone acetyltransferase (HAT) proteins often exhibit a high degree of specificity for lysine-bearing protein substrates. We have previously reported on the structure of the Tetrahymena Gcn5 HAT protein (tGcn5) bound to its preferred histone H3 substrate, revealing the mode of substrate binding by the Gcn5/PCAF family of HAT proteins. Interestingly, the Gcn5/PCAF HAT family has a remarkable ability to acetylate lysine residues within diverse cognate sites such as those found around lysines 14, 8, and 320 of histones H3, H4, and p53, respectively. To investigate the molecular basis for this, we now report on the crystal structures of tGcn5 bound to 19-residue histone H4 and p53 peptides. A comparison of these structures with tGcn5 bound to histone H3 reveals that the Gcn5/PCAF HATs can accommodate divergent substrates by utilizing analogous interactions with the lysine target and two C-terminal residues with a related chemical nature, suggesting that these interactions play a general role in Gcn5/PCAF substrate binding selectivity. In contrast, while the histone H3 complex shows extensive interactions with tGcn5 and peptide residues N-terminal to the target lysine, the corresponding residues in histone H4 and p53 are disordered, suggesting that the N-terminal substrate region plays an important role in the enhanced affinity of the Gcn5/PCAF HAT proteins for histone H3. Together, these studies provide a framework for understanding the substrate selectivity of HAT proteins.  相似文献   

18.
In vivo, histone tails are involved in numerous interactions, including those with DNA, adjacent histones, and other, nonhistone proteins. The amino termini are also the substrates for a number of enzymes, including histone acetyltransferases (HATs), histone deacetylases, and histone methyltransferases. Traditional biochemical approaches defining the substrate specificity profiles of HATs have been performed using purified histone tails, recombinant histones, or purified mononucleosomes as substrates. It is clear that the in vivo presentation of the substrate cannot be accurately represented by using these in vitro approaches. Because of the difficulty in translating in vitro results into in vivo situations, we developed a novel single-cell HAT assay that provides quantitative measurements of endogenous HAT activity. The HAT assay is performed under in vivo conditions by using the native chromatin structure as the physiological substrate. The assay combines the spatial resolving power of laser scanning confocal microscopy with simple statistical analyses to characterize CREB binding protein (CBP)- and P300-induced changes in global histone acetylation levels at specific lysine residues. Here we show that CBP and P300 exhibit unique substrate specificity profiles, consistent with the developmental and functional differences between the two HATs.  相似文献   

19.
Grubisha O  Smith BC  Denu JM 《The FEBS journal》2005,272(18):4607-4616
The Sir2 family of histone/protein deacetylases (sirtuins) is comprised of homologues found across all kingdoms of life. These enzymes catalyse a unique reaction in which NAD+ and acetylated substrate are converted into deacetylated product, nicotinamide, and a novel metabolite O-acetyl ADP-ribose. Although the catalytic mechanism is well conserved across Sir2 family members, sirtuins display differential specificity toward acetylated substrates, which translates into an expanding range of physiological functions. These roles include control of gene expression, cell cycle regulation, apoptosis, metabolism and ageing. The dependence of sirtuin activity on NAD+ has spearheaded investigations into how these enzymes respond to metabolic signals, such as caloric restriction. In addition, NAD+ metabolites and NAD+ salvage pathway enzymes regulate sirtuin activity, supporting a link between deacetylation of target proteins and metabolic pathways. Apart from physiological regulators, forward chemical genetics and high-throughput activity screening has been used to identify sirtuin inhibitors and activators. This review focuses on small molecule regulators that control the activity and functions of this unusual family of protein deacetylases.  相似文献   

20.
Using a variety of biochemical and cell-based approaches, we show that estrogen receptor alpha (ERalpha) is acetylated by the p300 acetylase in a ligand- and steroid receptor coactivator-dependent manner. Using mutagenesis and mass spectrometry, we identified two conserved lysine residues in ERalpha (Lys266 and Lys268) that are the primary targets of p300-mediated acetylation. These residues are acetylated in cells, as determined by immunoprecipitation-Western blotting experiments using an antibody that specifically recognizes ERalpha acetylated at Lys266 and Lys268. The acetylation of ERalpha by p300 is reversed by native cellular deacetylases, including trichostatin A-sensitive enzymes (i.e. class I and II deacetylases) and nicotinamide adenine dinucleotide-dependent/nicotinamide-sensitive enzymes (i.e. class III deacetylases, such as sirtuin 1). Acetylation at Lys266 and Lys268, or substitution of the same residues with glutamine (i.e. K266/268Q), a residue that mimics acetylated lysine, enhances the DNA binding activity of ERalpha in EMSAs. Likewise, substitution of Lys266 and Lys268 with glutamine enhances the ligand-dependent activity of ERalpha in a cell-based reporter gene assay. Collectively, our results implicate acetylation as a modulator of the ligand-dependent gene regulatory activity of ERalpha. Such regulation is likely to play a role in estrogen-dependent signaling outcomes in a variety of estrogen target tissues in both normal and pathological states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号