共查询到20条相似文献,搜索用时 15 毫秒
1.
Joseph R. Kasper Pei‐Fen Liu Chiwook Park 《Protein science : a publication of the Protein Society》2014,23(12):1728-1737
Proteins frequently fold via folding intermediates that correspond to local minima on the conformational energy landscape. Probing the structure of the partially unfolded forms in equilibrium under native conditions can provide insight into the properties of folding intermediates. To elucidate the structures of folding intermediates of Escherichia coli dihydrofolate reductase (DHFR), we investigated transient partial unfolding of DHFR under native conditions. We probed the structure of a high‐energy conformation susceptible to proteolysis (cleavable form) using native‐state proteolysis. The free energy for unfolding to the cleavable form is clearly less than that for global unfolding. The dependence of the free energy on urea concentration (m‐value) also confirmed that the cleavable form is a partially unfolded form. By assessing the effect of mutations on the stability of the partially unfolded form, we found that native contacts in a hydrophobic cluster formed by the F‐G and Met‐20 loops on one face of the central β‐sheet are mostly lost in the partially unfolded form. Also, the folded region of the partially unfolded form is likely to have some degree of structural heterogeneity. The structure of the partially unfolded form is fully consistent with spectroscopic properties of the near‐native kinetic intermediate observed in previous folding studies of DHFR. The findings suggest that the last step of the folding of DHFR involves organization in the structure of two large loops, the F‐G and Met‐20 loops, which is coupled with compaction of the rest of the protein. 相似文献
2.
Herbert Venthur Ana Mutis Jing‐Jiang Zhou Andrés Quiroz 《Physiological Entomology》2014,39(3):183-198
This review describes the main characteristics of odorant‐binding proteins (OBPs) for homology modelling and presents a summary of structure prediction studies on insect OBPs, along with the steps involved and some limitations and improvements. The technique involves a computing approach to model protein structures and is based on a comparison between a target (unknown structure) and one or more templates (experimentally determined structures). As targets for structure prediction, OBPs are considered to play a functional role for recognition, desorption, scavenging, protection and transportation of hydrophobic molecules (odourants) across an aqueous environment (lymph) to olfactory receptor neurones (ORNs) located in sensilla, the main olfactory units of insect antennae. Lepidopteran pheromone‐binding proteins, a subgroup of OBPs, are characterized by remarkable structural features, in which high sequence identities (approximately 30%) among these OBPs and a large number of available templates can facilitate the prediction of precise homology models. Approximately 30 studies have been performed on insect OBPs using homology modelling as a tool to predict their structures. Although some of the studies have assessed ligand‐binding affinity using structural information and biochemical measurements, few have performed docking and molecular dynamic (MD) simulations as a virtual method to predict best ligands. Docking and MD simulations are discussed in the context of discovery of novel semiochemicals (super‐ligands) using homology modelling to conceive further strategies in insect management. 相似文献
3.
Ligand binding specificity of the Escherichia coli periplasmic histidine binding protein,HisJ 下载免费PDF全文
Hans J. Vogel 《Protein science : a publication of the Protein Society》2017,26(2):268-279
The HisJ protein from Escherichia coli and related Gram negative bacteria is the periplasmic component of a bacterial ATP‐cassette (ABC) transporter system. Together these proteins form a transmembrane complex that can take up L‐histidine from the environment and translocate it into the cytosol. We have studied the specificity of HisJ for binding L‐His and many related naturally occurring compounds. Our data confirm that L‐His is the preferred ligand, but that 1‐methyl‐L‐His and 3‐methyl‐L‐His can also bind, while the dipeptide carnosine binds weakly and D‐histidine and the histidine degradation products, histamine, urocanic acid and imidazole do not bind. L‐Arg, homo‐L‐Arg, and post‐translationally modified methylated Arg‐analogs also bind with reasonable avidity, with the exception of symmetric dimethylated‐L‐Arg. In contrast, L‐Lys and L‐Orn have considerably weaker interactions with HisJ and methylated and acetylated Lys variants show relatively poor binding. It was also observed that the carboxylate group of these amino acids and their variants was very important for proper recognition of the ligand. Taken together our results are a key step towards designing HisJ as a specific protein‐based reagentless biosensor. 相似文献
4.
D. W. Miller K. A. Dill 《Protein science : a publication of the Protein Society》1997,6(10):2166-2179
Models of ligand binding are often based on four assumptions: (1) steric fit: that binding is determined mainly by shape complementarity; (2) native binding: that ligands mainly bind to native states; (3) locality: that ligands perturb protein structures mainly at the binding site; and (4) continuity: that small changes in ligand or protein structure lead to small changes in binding affinity. Using a generalization of the 2D HP lattice model, we study ligand binding and explore these assumptions. We first validate the model by showing that it reproduces typical binding behaviors. We observe ligand-induced denaturation, ANS and heme-like binding, and "lock-and-key" and "induced-fit" specific binding behaviors characterized by Michaelis-Menten or more cooperative types of binding isotherms. We then explore cases where the model predicts violations of the standard assumptions. For example, very different binding modes can result from two ligands of identical shape. Ligands can sometimes bind highly denatured states more tightly than native states and yet have Michaelis-Menten isotherms. Even low-population binding to denatured states can cause changes in global stability, hydrogen-exchange rates, and thermal B-factors, contrary to expectations, but in agreement with experiments. We conclude that ligand binding, similar to protein folding, may be better described in terms of energy landscapes than in terms of simpler mass-action models. 相似文献
5.
Tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) binds successively four molecules of its cofactor (NAD+) with affinities of ca 10(11) M(-1), 10(9) M(-1), 10(7) M(-1), and 10(5) M(-1). The reduction in the dynamics of the protein is greatest upon binding the first NAD+ molecule. Smaller reductions then occur upon binding the second and third NAD+ molecules, and the fourth NAD+ molecule binds without dynamic change. Reduction of the GAPDH dynamics, with consequent improvements in its internal bonding, can account for the increase in NAD+ binding affinity from 10(5) M(-1) to 10(11) M(-1). Evidence is provided that comparable fractions of the binding energy of other ligands, and of the catalytic efficiency of enzymes, may be derived in the same way. 相似文献
6.
Investigation of protein unfolding kinetics of proteins in crude samples may provide many exciting opportunities to study protein energetics under unconventional conditions. As an effort to develop a method with this capability, we employed “pulse proteolysis” to investigate protein unfolding kinetics. Pulse proteolysis has been shown to be an effective and facile method to determine global stability of proteins by exploiting the difference in proteolytic susceptibilities between folded and unfolded proteins. Electrophoretic separation after proteolysis allows monitoring protein unfolding without protein purification. We employed pulse proteolysis to determine unfolding kinetics of E. coli maltose binding protein (MBP) and E. coli ribonuclease H (RNase H). The unfolding kinetic constants determined by pulse proteolysis are in good agreement with those determined by circular dichroism. We then determined an unfolding kinetic constant of overexpressed MBP in a cell lysate. An accurate unfolding kinetic constant was successfully determined with the unpurified MBP. Also, we investigated the effect of ligand binding on unfolding kinetics of MBP using pulse proteolysis. On the basis of a kinetic model for unfolding of MBP•maltose complex, we have determined the dissociation equilibrium constant (Kd) of the complex from unfolding kinetic constants, which is also in good agreement with known Kd values of the complex. These results clearly demonstrate the feasibility and the accuracy of pulse proteolysis as a quantitative probe to investigate protein unfolding kinetics. 相似文献
7.
Anne Katrine Wallis Ateesh Sidhu Lee J. Byrne Mark J. Howard Lloyd W. Ruddock Richard A. Williamson Robert B. Freedman 《Protein science : a publication of the Protein Society》2009,18(12):2569-2577
Purified preparations of the recombinant b′x domain fragment of human protein‐disulphide isomerase (PDI), which are homogeneous by mass spectrometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis, comprise more than one species when analyzed by ion‐exchange chromatography and nondenaturing polyacrylamide gel electrophoresis. These species were resolved and shown to be monomer and dimer by analytical ultracentrifugation and analytical size‐exclusion chromatography. Spectroscopic properties indicate that the monomeric species corresponds to the “capped” conformation observed in the x‐ray structure of the I272A mutant of b′x (Nguyen, Wallis, Howard, Haapalainen, Salo, Saaranen, Sidhu, Wierenga, Freedman, Ruddock, and Williamson, J Mol Biol 2008;383:1144‐1155) in which the x region binds to a hydrophobic patch on the surface of the b′ domain; conversely, the dimeric species has an “open” or “uncapped” conformation in which the x region does not bind to this surface. The larger bb′x fragment of human PDI shows very similar behavior to b′x and can be resolved into a capped monomeric species and an uncapped dimer. Preparations of recombinant b′ domain of human PDI and of the bb′ domain pair are found exclusively as dimers. Full‐length PDI is known to comprise a mixture of monomeric and dimeric species, whereas the isolated a , b , and a′ domains of PDI are found exclusively as monomers. These results show that the b′ domain of human PDI tends to form homodimers—both in isolation and in other contexts—and that this tendency is moderated by the adjacent x region, which can bind to a surface patch on the b′ domain. 相似文献
8.
Two molecular forms of the folate binding protein were isolated and purified from human milk by a combination of cation exchange- and affinity chromatography. One protein (27 kDa) was a cleavage product of the other 100 kDa protein as evidenced by N-terminal amino acid sequence homology and a reduction in the molecular size of the latter protein to 27 kDa after cleavage of its hydrophobic glycosylphosphatidylinositol tail by phosphatidylinositol-specific phospholipase C. High-affinity binding of [3H]folate was characterized by upward convex Scatchard plots and increasing ligand binding affinity with decreasing concentrations of both proteins. Downward convex Scatchard plots and binding affinities showing no dependence on the protein concentration were, however, observed in highly diluted solutions of both proteins. Radioligand binding was inhibited by folate analogs, and dissociation of radioligand was slow at pH 7.4 but rapid and complete at pH 5.0 and 3.5. Ligand binding quenched the tryptophan fluorescence of the 27 kDa protein suggesting that tryptophan is present at the binding site and/or ligand binding induces a conformation change that affects tryptophan environment in the protein. The 27 kDa protein representing soluble folate binding protein exhibited a greater affinity for ligand binding than the 100 kDa protein which possesses a hydrophobic tail identical to the one that anchors the folate receptor to the cell membrane. 相似文献
9.
Jiayi Dou Lindsey Doyle Per Jr. Greisen Alberto Schena Hahnbeom Park Kai Johnsson Barry L. Stoddard David Baker 《Protein science : a publication of the Protein Society》2017,26(12):2426-2437
The steroid hormone 17α‐hydroxylprogesterone (17‐OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17‐OHP containing an extended, nonpolar, shape‐complementary binding pocket for the four‐ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17‐OHP with micromolar affinity. A co‐crystal structure of one of the designs revealed that 17‐OHP is rotated 180° around a pseudo‐two‐fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same “flipped” orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two‐fold symmetry of the molecule. 相似文献
10.
A well‐studied periplasmic‐binding protein involved in the abstraction of maltose is maltose‐binding protein (MBP), which undergoes a ligand‐induced conformational transition from an open (ligand‐free) to a closed (ligand‐bound) state. Umbrella sampling simulations have been us to estimate the free energy of binding of maltose to MBP and to trace the potential of mean force of the unbinding event using the center‐of‐mass distance between the protein and ligand as the reaction coordinate. The free energy thus obtained compares nicely with the experimentally measured value justifying our theoretical basis. Measurement of the domain angle (N‐terminal‐domain – hinge – C‐terminal‐domain) along the unbinding pathway established the existence of three different states. Starting from a closed state, the protein shifts to an open conformation during the initial unbinding event of the ligand then resides in a semi‐open conformation and later resides predominantly in an open‐state. These transitions along the ligand unbinding pathway have been captured in greater depth using principal component analysis. It is proposed that in mixed‐model, both conformational selection and an induced‐fit mechanism combine to the ligand recognition process in MBP. Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
11.
Active site alanine mutations convert deubiquitinases into high‐affinity ubiquitin‐binding proteins 下载免费PDF全文
Marie E Morrow Michael T Morgan Marcello Clerici Katerina Growkova Ming Yan David Komander Titia K Sixma Michal Simicek Cynthia Wolberger 《EMBO reports》2018,19(10)
A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild‐type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight‐binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30‐fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin. 相似文献
12.
Ligand binding and thermodynamic stability of a multidomain protein, calmodulin 总被引:1,自引:0,他引:1 下载免费PDF全文
Masino L Martin SR Bayley PM 《Protein science : a publication of the Protein Society》2000,9(8):1519-1529
Chemical and thermal denaturation of calmodulin has been monitored spectroscopically to determine the stability for the intact protein and its two isolated domains as a function of binding of Ca2+ or Mg2+. The reversible urea unfolding of either isolated apo-domain follows a two-state mechanism with relatively low deltaG(o)20 values of approximately 2.7 (N-domain) and approximately 1.9 kcal/mol (C-domain). The apo-C-domain is significantly unfolded at normal temperatures (20-25 degrees C). The greater affinity of the C-domain for Ca2+ causes it to be more stable than the N-domain at [Ca2+] > or = 0.3 mM. By contrast, Mg2+ causes a greater stabilization of the N- rather than the C-domain, consistent with measured Mg2+ affinities. For the intact protein (+/-Ca2+), the bimodal denaturation profiles can be analyzed to give two deltaG(o)20 values, which differ significantly from those of the isolated domains, with one domain being less stable and one domain more stable. The observed stability of the domains is strongly dependent on solution conditions such as ionic strength, as well as specific effects due to metal ion binding. In the intact protein, different folding intermediates are observed, depending on the ionic composition. The results illustrate that a protein of low intrinsic stability is liable to major perturbation of its unfolding properties by environmental conditions and liganding processes and, by extension, mutation. Hence, the observed stability of an isolated domain may differ significantly from the stability of the same structure in a multidomain protein. These results address questions involved in manipulating the stability of a protein or its domains by site directed mutagenesis and protein engineering. 相似文献
13.
Hayuki Sugimoto Miho Nakaura Shigenori Nishimura Shuichi Karita Hideo Miyake Akiyoshi Tanaka 《Protein science : a publication of the Protein Society》2009,18(8):1715-1723
Refolding of a thermally unfolded disulfide‐deficient mutant of the starch‐binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and 1H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half‐lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with β‐cyclodextrin as the native state, suggesting that the intermediate is highly‐ordered and native‐like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far‐UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off‐pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state. 相似文献
14.
Ellen Kloss Doug Barrick 《Protein science : a publication of the Protein Society》2009,18(9):1948-1960
Terminal deletions of units from α‐helical repeat proteins have provided insight into the physical origins of their cooperativity. To test if the same principles governing cooperativity apply to β‐sheet‐containing repeat proteins, we have created a series of C‐terminal deletion constructs from a large leucine‐rich repeat (LRR) protein, YopM. We have examined the structure and stability of the resulting deletion constructs by a combination of solution spectroscopy, equilibrium denaturation studies, and limited proteolysis. Surprisingly, a high degree of nonuniformity was found in the stability distribution of YopM. Unlike previously studied repeat proteins, we identified several key LRR that on deletion disrupt nearby structure, at distances as far away as up to three repeats, in YopM. This partial unfolding model is supported by limited proteolysis studies and by point substitution in repeats predicted to be disordered as a result of deletion of adjacent repeats. We show that key internal‐ and terminal‐caps must be present to maintain the structural integrity in adjacent regions (roughly four LRRs long) of decreased stability. The finding that full‐length YopM maintains a high level of cooperativity in equilibrium unfolding underscores the importance of interfacial interactions in stabilizing locally unstable regions of structure. 相似文献
15.
Thermodynamic analysis of ANS binding to partially unfolded α‐lactalbumin: correlation of endothermic to exothermic changeover with formation of authentic molten globules 下载免费PDF全文
A fluorescent reporter, 8‐anilino‐1‐naphthalene sulfonic acid (ANS), can serve as a reference molecule for conformational transition of a protein because its aromatic carbons have strong affinity with hydrophobic cores of partially unfolded molten globules. Using a typical calcium‐binding protein, bovine α‐lactalbumin (BLA), as a model protein, we compared the ANS binding thermodynamics to the decalcified (10 mM EDTA treated) apo‐BLA at two representative temperatures: 20 and 40 °C. This is because the authentic molten globule is known to form more heavily at an elevated temperature such as 40 °C. Isothermal titration calorimetry experiments revealed that the BLA–ANS interactions at both temperatures were entropy‐driven, and the dissociation constants were similar on the order of 10?4 M, but there was a dramatic changeover in the binding thermodynamics from endothermic at 20 °C to exothermic at 40 °C. We believe that the higher subpopulation of authentic molten globules at 40 °C than 20 °C would be responsible for the results, which also indicate that weak binding is sufficient to alter the ANS binding mechanisms. We expect that the thermodynamic properties obtained from this study would serve as a useful reference for investigating the binding of other hydrophobic ligands such as oleic acid to apo‐BLA, because oleic acid is known to have tumor‐selective cytotoxicity when complexed with partially unfolded α‐lactalbumin. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
16.
The purpose of this article is to highlight the versatility of nonfluorescent Förster resonance energy transfer (FRET) acceptors in determination of protein equilibrium dissociation constants and kinetic rates. Using a nonfluorescent acceptor eliminates the necessity to spectrally isolate the donor fluorescence when performing binding titrations covering a broad range of reagent concentrations. Moreover, random distribution of the donor and acceptor chromophores on the surface of proteins increases the probability of FRET occurring on their interaction. Three high-affinity antibodies are presented in this study as characteristic protein systems. Monoclonal antibody (mAb) 106.3 binds brain natriuretic peptide (BNP)5–13(C10A) and full-length BNP1–32 with the dissociation constants 0.26 ± 0.01 and 0.05 ± 0.02 nM, respectively, which was confirmed by kinetic measurements. For anti-hCG (human chorionic gonadotropin) mAb 8F11, studied at two incorporation ratios (IRs = 1.9 and 3.8) of the nonfluorescent FRET acceptor, KD values of 0.04 ± 0.02 and , respectively, were obtained. Likewise, the binding of goat anti-hamster immunoglobulin G (IgG) antibody was not affected by conjugation and yielded KD values of 1.26 ± 0.04, 1.25 ± 0.05, and 1.14 ± 0.04 nM at IRs of 1.7, 4.7, and 8.1, respectively. We conclude that this FRET-based method offers high sensitivity, practical simplicity, and versatility in protein binding studies. 相似文献
17.
18.
Resolving protein structure‐function‐binding site relationships from a binding site similarity network perspective 下载免费PDF全文
Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non‐homologous protein families, leading to mis‐annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold‐function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold‐function‐binding site relationships has been systematically generated. A network‐based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one‐to‐one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly‐pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319–1335. © 2017 Wiley Periodicals, Inc. 相似文献
19.
Yoichi Murakami Kengo Kinoshita Akira R. Kinjo Haruki Nakamura 《Protein science : a publication of the Protein Society》2013,22(10):1379-1391
Many proteins function by interacting with other small molecules (ligands). Identification of ligand‐binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand‐binding protein sequences and functions. Consequently, we classified the patches into ~2000 well‐characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross‐fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes. 相似文献
20.
The binding determinants of the human acyl-CoA binding domain-containing protein (ACBD) 6 and its function in lipid renewal of membranes were investigated. ACBD6 binds acyl-CoAs of a chain length of 6 to 20 carbons. The stoichiometry of the association could not be fitted to a 1-to-1 model. Saturation of ACBD6 by C16:0-CoA required higher concentration than less abundant acyl-CoAs. In contrast to ACBD1 and ACBD3, ligand binding did not result in the dimerization of ACBD6. The presence of fatty acids affected the binding of C18:1-CoA to ACBD6, dependent on the length, the degree of unsaturation, and the stereoisomeric conformation of their aliphatic chain. ACBD1 and ACBD6 negatively affected the formation of phosphatidylcholine (PC) and phosphatidylethanolamine in the red blood cell membrane. The acylation rate of lysophosphatidylcholine into PC catalyzed by the red cell lysophosphatidylcholine-acyltransferase 1 protein was limited by the transfer of the acyl-CoA substrate from ACBD6 to the acyltransferase enzyme. These findings provide evidence that the binding properties of ACBD6 are adapted to prevent its constant saturation by the very abundant C16:0-CoA and protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilizing enzymes. 相似文献