首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Li Y  Jin K  Setlow B  Setlow P  Hao B 《Journal of bacteriology》2012,194(17):4537-4545
The SleB protein is one of two redundant cortex-lytic enzymes (CLEs) that initiate the degradation of cortex peptidoglycan (PG), a process essential for germination of spores of Bacillus species, including Bacillus anthracis. SleB has been characterized as a soluble lytic transglycosylase that specifically recognizes spore cortex PG and catalyzes the cleavage of glycosidic bonds between N-acetylmuramic acid (NAM) and N-acetylglucosamine residues with concomitant formation of a 1,6-anhydro bond in the NAM residue. We found that like the full-length Bacillus cereus SleB, the catalytic C-terminal domain (SleBC) exhibited high degradative activity on cortex PG in vitro, although SleB''s N-terminal domain, thought to bind PG, was inactive. The 1.85-Å crystal structure of SleBC reveals an ellipsoid molecule with two distinct domains dominated by either α helices or β strands. The overall fold of SleB closely resembles that of the catalytic domain of the family 1 lytic transglycosylases but with a completely different topological arrangement. Structural analysis shows that an invariant Glu157 of SleB is in a position equivalent to that of the catalytic glutamate in other lytic transglycosylases. Indeed, SleB bearing a Glu157-to-Gln mutation lost its cortex degradative activity completely. In addition, the other redundant CLE (called CwlJ) in Bacillus species likely has a three-dimensional structure similar to that of SleB, including the invariant putative catalytic Glu residue. SleB and CwlJ may offer novel targets for the development of anti-spore agents.  相似文献   

2.
Previous work demonstrated that Bacillus megaterium QM B1551 spores that are null for the sleB and cwlJ genes, which encode cortex-lytic enzymes (CLEs), either of which is required for efficient cortex hydrolysis in Bacillus spores, could germinate efficiently when complemented with a plasmid-borne copy of ypeB plus the nonlytic portion of sleB encoding the N-terminal domain of SleB (sleBN). The current study demonstrates that the defective germination phenotype of B. megaterium sleB cwlJ spores can partially be restored when they are complemented with plasmid-borne ypeB alone. However, efficient germination in this genetic background requires the presence of sleL, which in this species was suggested previously to encode a nonlytic epimerase. Recombinant B. megaterium SleL showed little, or no, activity against purified spore sacculi, cortical fragments, or decoated spore substrates. However, analysis of muropeptides generated by the combined activities of recombinant SleB and SleL against spore sacculi revealed that B. megaterium SleL is actually an N-acetylglucosaminidase, albeit with apparent reduced activity compared to that of the homologous Bacillus cereus protein. Additionally, decoated spores were induced to release a significant proportion of dipicolinic acid (DPA) from the spore core when incubated with recombinant SleL plus YpeB, although optimal DPA release required the presence of endogenous CLEs. The physiological basis that underpins this newly identified dependency between SleL and YpeB is not clear, since pulldown assays indicated that the proteins do not interact physically in vitro.  相似文献   

3.
Germination of Bacillus spores requires degradation of a modified layer of peptidoglycan (PG) termed the spore cortex by two redundant cortex-lytic enzymes (CLEs), CwlJ and SleB, plus SleB''s partner protein, YpeB. In this study, in vitro and in vivo analyses have been used to clarify the roles of individual SleB and YpeB domains in PG degradation. Purified mature Bacillus cereus SleB without its signal sequence (SleBM) and the SleB C-terminal catalytic domain (SleBC) efficiently triggered germination of decoated Bacillus megaterium and Bacillus subtilis spores lacking endogenous CLEs; previously, SleB''s N-terminal domain (SleBN) was shown to bind PG but have no enzymatic activity. YpeB lacking its putative membrane anchoring sequence (YpeBM) or its N- and C-terminal domains (YpeBN and YpeBC) alone did not exhibit degradative activity, but YpeBN inhibited SleBM and SleBC activity in vitro. The severe germination defect of B. subtilis cwlJ sleB or cwlJ sleB ypeB spores was complemented by ectopic expression of full-length sleB [sleB(FL)] and ypeB [ypeB(FL)], but normal levels of SleBFL in spores required normal spore levels of YpeBFL and vice versa. sleB(FL) or ypeB(FL) alone, sleB(FL) plus ypeB(C) or ypeB(N), and sleB(C) or sleB(N) plus ypeB(FL) did not complement the cortex degradation defect in cwlJ sleB ypeB spores. In addition, ectopic expression of sleB(FL) or cwlJ(FL) with a Glu-to-Gln mutation in a predicted active-site residue failed to restore the germination of cwlJ sleB spores, supporting the role of this invariant glutamate as the key catalytic residue in SleB and CwlJ.  相似文献   

4.
The crystal structure of the C‐terminal domain of the Bacillus megaterium YpeB protein has been solved by X‐ray crystallography to 1.80‐Å resolution. The full‐length protein is essential in stabilising the SleB cortex lytic enzyme in Bacillus spores, and may have a role in regulating SleB activity during spore germination. The YpeB‐C crystal structure comprises three tandemly repeated PepSY domains, which are aligned to form an extended laterally compressed molecule. A predominantly positively charged region located in the second PepSY domain may provide a site for protein interactions that are important in stabilising SleB and YpeB within the spore. Proteins 2015; 83:1914–1921. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Molecular-genetic and muropeptide analysis techniques have been applied to examine the function in vivo of the Bacillus megaterium QM B1551 SleB and SleL proteins. In common with Bacillus subtilis and Bacillus anthracis, the presence of anhydromuropeptides in B. megaterium germination exudates, which is indicative of lytic transglycosylase activity, is associated with an intact sleB structural gene. B. megaterium sleB cwlJ double mutant strains complemented with engineered SleB variants in which the predicted N- or C-terminal domain has been deleted (SleB-ΔN or SleB-ΔC) efficiently initiate and hydrolyze the cortex, generating anhydromuropeptides in the process. Additionally, sleB cwlJ strains complemented with SleB-ΔN or SleB-ΔC, in which glutamate and aspartate residues have individually been changed to alanine, all retain the ability to hydrolyze the cortex to various degrees during germination, with concomitant release of anhydromuropeptides to the surrounding medium. These data indicate that while the presence of either the N- or C-terminal domain of B. megaterium SleB is sufficient for initiation of cortex hydrolysis and the generation of anhydromuropeptides, the perceived lytic transglycosylase activity may be derived from an enzyme(s), perhaps exclusively or in addition to SleB, which has yet to be identified. B. megaterium SleL appears to be associated with the epimerase-type activity observed previously in B. subtilis, differing from the glucosaminidase function that is apparent in B. cereus/B. anthracis.Spores of the genera Bacillus and Clostridium emerge from dormancy via the process of germination. The germination process comprises a series of sequential biophysical and biochemical reactions that result irreversibly in the spore losing its properties of metabolic dormancy and extreme resistance to various chemical and physical treatments (24, 34). Germination is initiated by the presumed binding of small molecular germinants, commonly amino acids or sugars, to cognate receptors located within the spore inner membrane (25, 28). In a process that is poorly understood at the molecular level, this interaction leads to a change in the permeability of the inner membrane, resulting in the release of various solutes from the spore core, including metal ions, calcium dipicolinate (Ca-DPA), and some amino acids (32, 33, 35). A degree of rehydration of the core is evident at or around the same time, although this is insufficient to permit a significant degree of vegetative metabolism (9, 31). These events, which appear common to all Bacillus species where examined, comprise stage I of germination (31, 32, 34).The major event in stage II of the germination process from a biochemical perspective involves depolymerization of the spore cortex. The spore cortex is a thick layer of peptidoglycan, characterized by the spore-specific muramic acid lactam (MAL) moiety (37, 38), which, together with the thin inner layer of germ cell wall peptidoglycan (36), forms contiguous layers that entirely envelope the spore protoplast. While the germ cell wall forms the initial cell wall during vegetative outgrowth, the spore cortex serves primarily to maintain the relatively dehydrated status of the spore protoplast during dormancy (13). Dissolution of the cortex permits complete hydration of the spore core and resumption of vegetative metabolism, leading ultimately to shedding of the spore coat and the emergence of a new vegetative cell (34).A number of studies have indicated that spores of various Bacillus species employ two cortex-lytic enzymes (CLEs), SleB and CwlJ, to initiate hydrolysis of the cortex during stage II of the germination process (16, 19, 32). These enzymes are semiredundant; hence, strains bearing null mutations in either structural gene can still degrade the cortex sufficiently to complete germination, whereas double mutant strains do not appear capable of degrading the cortex at all, resulting typically in a decrease of several orders of magnitude in colony-forming ability (15, 19, 32). Other enzymes, including Bacillus cereus/Bacillus anthracis SleL, are also involved in stage II of germination, apparently hydrolyzing peptidoglycan products of SleB and/or CwlJ to smaller peptidoglycan fragments that can more easily permeate through the spore coats to the surrounding germination medium (21).Studies with SleB and SleL purified from dormant and germinating spores indicate that whereas the latter enzyme degrades only cortical fragments of peptidoglycan (7), SleB has a requirement for intact peptidoglycan that has adopted the precise architecture present within the spore (12, 22). These substrate requirements appear to be important in maintenance of the respective autolysins, which are present in the spore in a mature form, in an inactive state during dormancy. Additionally, whereas the molecular mechanism of activation of SleB remains unclear—a change in cortical stress/architecture induced by stage I events has been hypothesized (12)—the efflux of Ca-DPA from the spore core to the cortex/coat boundary where CwlJ is localized (5) appears to be the mechanism by which this CLE is activated. CwlJ can also be activated by high concentrations of exogenous Ca-DPA, presenting an alternative germination pathway that bypasses the germinant receptors (27).The hydrolytic bond specificity of various CLEs has been examined by both direct and indirect biochemical means. Direct assays are typically conducted by incubation of purified or recombinant enzymes with peptidoglycan fragments or suspensions of spores in which the cortex is rendered accessible by first chemically compromising the permeability of the spore coats (7, 12, 22). Subsequent assays for the generation of reducing groups and/or free amino groups can yield information on the probable hydrolytic bond specificity of the respective enzyme(s) being assayed.More recently, the high-performance liquid chromatography/mass spectrometry (HPLC/MS)-based muropeptide analysis technique has been applied to characterize CLE activity during germination of various spore-forming species (2, 4, 10). This methodology has the resolution to reveal fine structural changes that occur to the peptidoglycan in vivo during germination, and when used in combination with CLE null mutant strains, it can be used to indirectly correlate the generation of certain classes of muropeptides, and therefore the hydrolytic bond specificity, with defined CLEs. Muropeptide analysis has revealed, for example, that an intact copy of the sleB gene in B. subtilis and B. anthracis is required for the presence of anhydromuropeptides in the germination exudates of these respective species, indicating that SleB is a lytic transglycosylase or generates substrate for subsequent lytic transglycosylase activity (6, 16). Conversely, B. cereus SleB was characterized as a probable amidase after enzyme purified from germinating spores was found to liberate a large amount of free amino groups when incubated with coat-stripped spores as a substrate (22). The hydrolytic bond specificity of SleB therefore remains ambiguous and perhaps varies between different species.Contrary to these observations, the overall structural architecture of SleB appears to be well conserved between different Bacillus species. Alignment of the primary amino acid sequence from different species indicates that the mature protein comprises an N-terminal domain that is connected to the C-terminal domain by a linker region that is variable in length and amino acid composition (Fig. (Fig.1).1). The N-terminal domain is thought to comprise the peptidoglycan binding domain by virtue of two direct sequence repeats that are reminiscent of cell wall-binding motifs observed in other proteins (26). The C-terminal domain shows homology with that of the other major Bacillus CLE, CwlJ, which lacks a corresponding peptidoglycan binding domain and is therefore thought to comprise the catalytic domain (19), although there is as yet no experimental evidence to substantiate this idea.Open in a separate windowFIG. 1.ClustalW alignment of SleB from various Bacillus species. Residues predicted to comprise putative structural domains are denoted. Stars indicate charged residues that were subjected to amino acid substitution in this work. BM, B. megaterium QM B1551; BC, B. cereus W; BCl, B. clausii KSM-K16; BS, B. subtilis 168.In the current study, we have investigated the molecular function of SleB during germination of Bacillus megaterium QM B1551 spores, employing engineered SleB N- and C-terminal deletion strains, site-directed mutagenesis (SDM), and muropeptide analyses. In addition to revealing several cortex-modifying activities during germination of this species, the presented data indicate that while the presence of either the N- or C-terminal domain of SleB is sufficient for the generation of anhydromuropeptides during germination, this may be an indirect effect, and at least a degree of lytic transglycosylase activity may result from the activity of another as yet unidentified enzyme.  相似文献   

6.
X Jing  HR Robinson  JD Heffron  DL Popham  FD Schubot 《Proteins》2012,80(10):2469-2475
Bacillus anthracis produces metabolically inactive spores. Germination of these spores requires germination‐specific lytic enzymes (GSLEs) that degrade the unique cortex peptidoglycan to permit resumption of metabolic activity and outgrowth. We report the first crystal structure of the catalytic domain of a GSLE, SleB. The structure revealed a transglycosylase fold with unique active site topology and permitted identification of the catalytic glutamate residue. Moreover, the structure provided insights into the molecular basis for the specificity of the enzyme for muramic‐δ‐lactam‐containing cortex peptidoglycan. The protein also contains a metal‐binding site that is positioned directly at the entrance of the substrate‐binding cleft. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Aims: To determine the mechanism of wet heat killing of spores of Bacillus cereus and Bacillus megaterium. Methods and Results: Bacillus cereus and B. megaterium spores wet heat‐killed 82–99% gave two bands on equilibrium density gradient centrifugation. The lighter band was absent from spores that were not heat‐treated and increased in intensity upon increased heating times. These spores lacked dipicolinic acid (DPA) were not viable, germinated minimally and had much denatured protein. The spores in the denser band had viabilities as low as 2% of starting spores but retained normal DPA levels and most germinated, albeit slowly. However, these largely dead spores outgrew poorly if at all and synthesized little or no ATP following germination. Conclusions: Wet heat treatment appears to kill spores of B. cereus and B. megaterium by denaturing one or more key proteins, as has been suggested for wet heat killing of Bacillus subtilis spores. Significance and Impact of the Study: This work provides further information on the mechanisms of killing of spores of Bacillus species by wet heat, the most common method for spore inactivation.  相似文献   

8.
Aims:  To determine roles of cortex lytic enzymes (CLEs) in Bacillus megaterium spore germination.
Methods and Results:  Genes for B. megaterium CLEs CwlJ and SleB were inactivated and effects of loss of one or both on germination were assessed. Loss of CwlJ or SleB did not prevent completion of germination with agents that activate the spore's germinant receptors, but loss of CwlJ slowed the release of dipicolinic acid (DPA). Loss of both CLEs also did not prevent release of DPA and glutamate during germination with KBr. However, cwlJ sleB spores had decreased viability, and could not complete germination. Loss of CwlJ eliminated spore germination with Ca2+ chelated to DPA (Ca-DPA), but loss of CwlJ and SleB did not affect DPA release in dodecylamine germination.
Conclusions:  CwlJ and SleB play redundant roles in cortex degradation during B. megaterium spore germination, and CwlJ accelerates DPA release and is essential for Ca-DPA germination. The roles of these CLEs are similar in germination of B. megaterium and Bacillus subtilis spores.
Significance and Impact of the Study:  These results indicate that redundant roles of CwlJ and SleB in cortex degradation during germination are similar in spores of Bacillus species; consequently, inhibition of these enzymes will prevent germination of Bacillus spores.  相似文献   

9.
The Bacillus anthracis endospore loses resistance properties during germination when its cortex peptidoglycan is degraded by germination-specific lytic enzymes (GSLEs). Although this event normally employs several GSLEs for complete cortex removal, the SleB protein alone can facilitate enough cortex hydrolysis to produce vulnerable spores. As a means to better understand its enzymatic function, SleB was overexpressed, purified, and tested in vitro for depolymerization of cortex by measurement of optical density loss and the solubilization of substrate. Its ability to bind peptidoglycan was also investigated. SleB functions independently as a lytic transglycosylase on both intact and fragmented cortex. Most of the muropeptide products that SleB generates are large and are potential substrates for other GSLEs present in the spore. Study of a truncated protein revealed that SleB has two domains. The N-terminal domain is required for stable peptidoglycan binding, while the C-terminal domain is the region of peptidoglycan hydrolytic activity. The C-terminal domain also exhibits dependence on cortex containing muramic-δ-lactam in order to carry out hydrolysis. As the conditions and limitations for SleB activity are further elucidated, they will enable the development of treatments that stimulate premature germination of B. anthracis spores, greatly simplifying decontamination measures.  相似文献   

10.
The hydrolysis of the bacterial spore peptidoglycan (cortex) is a crucial event in spore germination. It has been suggested that SleC and SleM, which are conserved among clostridia, are to be considered putative cortex-lytic enzymes in Clostridium perfringens. However, little is known about the details of the hydrolytic process by these enzymes during germination, except that SleM functions as a muramidase. Muropeptides derived from SleC-digested decoated spores of a Bacillus subtilis mutant that lacks the enzymes, SleB, YaaH and CwlJ, related to cortex hydrolysis were identified by amino acid analysis and mass spectrometry. The results suggest that SleC is most likely a bifunctional enzyme possessing lytic transglycosylase activity and N-acetylmuramoyl-L-alanine amidase activity confined to cross-linked tetrapeptide-tetrapeptide moieties of the cortex structure. Furthermore, it appears that during germination of Clostridium perfringens spores, SleC causes merely small and local changes in the cortex structure, which are necessary before SleM can function.  相似文献   

11.
Aims: To determine yields, germination and stability of superdormant Bacillus cereus spores. Methods and Results: Superdormant B. cereus spores were isolated by germination with high concentrations of inosine or l ‐alanine in 2–5% yield and did not germinate with high concentrations of either of these germinants, but germinated like starting spores with Ca‐DPA, dodecylamine, l ‐alanine plus inosine or concentrated complete medium. Yields of superdormant spores from germinations with low inosine concentrations were higher, and these spores germinated poorly with low inosine, but relatively normally with high inosine. Yields of superdormant spores were also higher when nonheat‐activated spores were germinated. Superdormant spores stored at 4°C slowly recovered some germination capacity, but recovery was slowed significantly at ?20°C and ?80°C. Conclusions: Factors that influence levels of superdormant B. cereus spores and the properties of such spores are similar to those in B. megaterium and B. subtilis, suggesting there are common mechanisms involved in superdormancy of Bacillus spores. Significance: Superdormant spores are a major concern in the food industry, because the presence of such spores precludes decontamination strategies based on triggering spore germination followed by mild killing treatments. Studies of the properties of superdormant spores may suggest ways to eliminate them.  相似文献   

12.
The infectious agent of the disease anthrax is the spore of Bacillus anthracis. Bacterial spores are extremely resistant to environmental stresses, which greatly hinders spore decontamination efforts. The spore cortex, a thick layer of modified peptidoglycan, contributes to spore dormancy and resistance by maintaining the low water content of the spore core. The cortex is degraded by germination-specific lytic enzymes (GSLEs) during spore germination, rendering the cells vulnerable to common disinfection techniques. This study investigates the relationship between SleB, a GSLE in B. anthracis, and YpeB, a protein necessary for SleB stability and function. The results indicate that ΔsleB and ΔypeB spores exhibit similar germination phenotypes and that the two proteins have a strict codependency for their incorporation into the dormant spore. In the absence of its partner protein, SleB or YpeB is proteolytically degraded soon after expression during sporulation, rather than escaping the developing spore. The three PepSY domains of YpeB were examined for their roles in the interaction with SleB. YpeB truncation mutants illustrate the necessity of a region beyond the first PepSY domain for SleB stability. Furthermore, site-directed mutagenesis of highly conserved residues within the PepSY domains resulted in germination defects corresponding to reduced levels of both SleB and YpeB in the mutant spores. These results identify residues involved in the stability of both proteins and reiterate their codependent relationship. It is hoped that the study of GSLEs and interacting proteins will lead to the use of GSLEs as targets for efficient activation of spore germination and facilitation of spore cleanup.  相似文献   

13.
Endolysins are bacteriophage‐encoded peptidoglycan hydrolases that specifically degrade the bacterial cell wall at the end of the phage lytic cycle. They feature a distinct modular architecture, consisting of enzymatically active domains (EADs) and cell wall‐binding domains (CBDs). Structural analysis of the complete enzymes or individual domains is required for better understanding the mechanisms of peptidoglycan degradation and provides guidelines for the rational design of chimeric enzymes. We here report the crystal structure of the EAD of PlyP40, a member of the GH‐25 family of glycosyl hydrolases, and the first muramidase reported for Listeria phages. Site‐directed mutagenesis confirmed key amino acids (Glu98 and Trp10) involved in catalysis and substrate stabilization. In addition, we found that PlyP40 contains two heterogeneous CBD modules with homology to SH3 and LysM domains. Truncation analysis revealed that both domains are required for full activity but contribute to cell wall recognition and lysis differently. Replacement of CBDP40 with a corresponding domain from a different Listeria phage endolysin yielded an enzyme with a significant shift in pH optimum. Finally, domain swapping between PlyP40 and the streptococcal endolysin Cpl‐1 produced an intergeneric chimera with activity against Listeria cells, indicating that structural similarity of individual domains determines enzyme function.  相似文献   

14.
Peptidoglycan deacetylases (PGNG‐dacs) belong to the Carbohydrate Esterase Family 4 (CE4) and have been described as required for bacterial evasion to lysozyme and innate immune responses. Interestingly, there is an unusual occurrence of 10 putative polysaccharide deacetylases, including five PGNG‐dacs, in the Bacillus sp. genomes, especially B. cereus and B. anthracis. To elucidate the physiological role of these multiple deacetylases, we employed genetic analysis and protein localization studies of five putative PGNG‐dacs from B. anthracis as well as biochemical analysis of their corresponding homologues from B. cereus. Our data confirm that three enzymes are PGNG‐dacs. While BA1977, associated with lateral peptidoglycan synthesis, is a bona fide peptidoglycan deacetylase involved in resistance to host lysozyme and required for full virulence, BA1961 and BA3679 participate in the biogenesis of the peptidoglycan during both elongation and cell division. Furthermore, two enzymes are important for neutral polysaccharide attachment to PG and consequently anchoring of S‐layer proteins (BA5436) and for polysaccharide modification (BA2944). Our results provide novel and fundamental insights into the function of polysaccharide deacetylases in a major bioterrorism agent.  相似文献   

15.
Bacteriolytic enzymes often possess a C‐terminal binding domain that recognizes specific motifs on the bacterial surface and a catalytic domain that cleaves covalent linkages within the cell wall peptidoglycan. PlyPH, one such lytic enzyme of bacteriophage origin, has been reported to be highly effective against Bacillus anthracis, and can kill up to 99.99% of the viable bacteria. The bactericidal activity of this enzyme, however, appears to be strongly dependent on the age of the bacterial culture. Although highly bactericidal against cells in the early exponential phase, the enzyme is substantially less effective against stationary phase cells, thus limiting its application in real‐world settings. We hypothesized that the binding domain of PlyPH may differ in affinity to cells in different Bacillus growth stages and may be primarily responsible for the age‐restricted activity. We therefore employed an in silico approach to identify phage lysins differing in their specificity for the bacterial cell wall. Specifically we focused our attention on Plyβ, an enzyme with improved cell wall‐binding ability and age‐independent bactericidal activity. Although PlyPH and Plyβ have dissimilar binding domains, their catalytic domains are highly homologous. We characterized the biocatalytic mechanism of Plyβ by identifying the specific bonds cleaved within the cell wall peptidoglycan. Our results provide an example of the diversity of phage endolysins and the opportunity for these biocatalysts to be used for broad‐based protection from bacterial pathogens. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1487–1493, 2015  相似文献   

16.
Spores of Bacillus megaterium, Bacillus cereus, and Bacillus subtilis were found to exhibit intrinsic paramagnetic properties as a result of the accumulation of manganese ions. All three Bacillus species displayed strong yet distinctive magnetic properties arising from differences in manganese quantity and valency. Manganese ions were found to accumulate both within the spore core as well as being associated with the surface of the spore. Bacillus megaterium spores accumulated up to 1 wt.% manganese (II) within, with a further 0.6 wt.% adsorbed onto the surface. At room temperature, Bacillus spores possess average magnetic susceptibilities in the range of 10−6 to 10−5. Three spore‐related biotechnological applications—magnetic sensing, magnetic separation and metal ion adsorption—were assessed subsequently, with the latter two considered as having the most potential for development.
  相似文献   

17.
Bacterial spores remain dormant and highly resistant to environmental stress until they germinate. Completion of germination requires the degradation of spore cortex peptidoglycan by germination-specific lytic enzymes (GSLEs). Bacillus anthracis has four GSLEs: CwlJ1, CwlJ2, SleB, and SleL. In this study, the cooperative action of all four GSLEs in vivo was investigated by combining in-frame deletion mutations to generate all possible double, triple, and quadruple GSLE mutant strains. Analyses of mutant strains during spore germination and outgrowth combined observations of optical density loss, colony-producing ability, and quantitative identification of spore cortex fragments. The lytic transglycosylase SleB alone can facilitate enough digestion to allow full spore viability and generates a variety of small and large cortex fragments. CwlJ1 is also sufficient to allow completion of nutrient-triggered germination independently and is a major factor in Ca2+-dipicolinic acid (DPA)-triggered germination, but its enzymatic activity remains unidentified because its products are large and not readily released from the spore''s integuments. CwlJ2 contributes the least to overall cortex digestion but plays a subsidiary role in Ca2+-DPA-induced germination. SleL is an N-acetylglucosaminidase that plays the major role in hydrolyzing the large products of other GSLEs into small, rapidly released muropeptides. As the roles of these enzymes in cortex degradation become clearer, they will be targets for methods to stimulate premature germination of B. anthracis spores, greatly simplifying decontamination measures.The Gram-positive bacterium Bacillus anthracis is the etiologic agent of cutaneous, gastrointestinal, and inhalational anthrax (24). An anthrax infection begins when the host is infected with highly resistant, quiescent B. anthracis spores (1, 24). Within the host, the spore''s sensory mechanism recognizes chemical signals, known as germinants, and triggers germination, which leads to the resumption of metabolism (36). Spores that have differentiated into vegetative cells produce a protective capsule and deadly toxins. These virulence factors allow the bacteria to evade the host''s immune system and establish an infection resulting in septicemia, toxemia, and frequently death (24). Although vegetative cells produce virulence factors that are potentially fatal, these cells cannot initiate infections and are much more susceptible to antimicrobial treatments than spores (24). Therefore, efficient triggering of spore germination may enhance current decontamination methods.Spores are highly resistant to many environmental insults because the spore core (cytoplasm) is dehydrated, dormant, and surrounded by multiple protective layers, including a modified layer of peptidoglycan (PG) known as the cortex (36). The cortex functions to maintain dormancy and heat resistance by preventing core rehydration (9). It is composed of alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) sugars (Fig. (Fig.1).1). Peptide side chains on the NAM residues are either involved in interstrand cross-linking, cleaved to single l-alanine side chains, or fully removed with accompanying formation of muramic-δ-lactam (2, 31, 38). After germination is initiated by either nutrient or nonnutrient germinants, the cortex is depolymerized, resulting in complete core rehydration, resumption of metabolic activity, and outgrowth (33, 36).Open in a separate windowFIG. 1.Spore PG structure and hydrolysis. The central structure shows a representative spore PG strand with alternating NAG and NAM or muramic-δ-lactam (MδL) residues and with tetrapeptide or l-Ala side chains on the NAM residues. Forked arrows originate at sites of hydrolysis by the indicated enzymes and point to muropeptide products. The indicated “aG” muropeptide names are as previously published (7, 11). SleB lytic transglycosylase activity produces muropeptides terminating in anhydro-NAM. Cleavage at adjacent NAM residues produces the tetrasaccharide aG7a or aG7b, while cleavage further apart can produce octasaccharides or larger fragments. These can be further cleaved by muramidase treatment, resulting in the production of tetrasaccharide N, which terminates in NAM. The N-acetylglucosaminidase activity of SleL produces tetrasaccharides terminating in NAG, which can be further cleaved by muramidase to trisaccharides terminating in NAM.Cortex hydrolysis is driven by autolysins called germination-specific cortex lytic enzymes (GSLEs) that recognize the cortex-specific muramic-δ-lactam residues (2, 4, 21, 32). GSLEs fall into two classes: spore cortex lytic enzymes (SCLEs), which are thought to depolymerize intact cortical PG, and cortical fragment lytic enzymes (CFLEs), which further degrade partially hydrolyzed cortex (21). Both SCLEs and CFLEs have been identified in a variety of spore-forming species, including B. anthracis (11, 18, 19), Bacillus cereus (4, 20, 26), Bacillus megaterium (8, 34), Bacillus subtilis (13, 16, 25), Bacillus thuringiensis (12), and Clostridium perfringens (5, 23). Of the four GSLEs identified in B. anthracis, CwlJ1, CwlJ2, and SleB are predicted to be SCLEs (11), whereas SleL is thought to be a CFLE (18).Recently, independent studies showed that CwlJ1 and the lytic transglycosylase SleB (Fig. (Fig.1)1) play partially redundant roles and that either is sufficient for spore germination and outgrowth (10, 11). However, these same studies report conflicting results concerning the role of CwlJ2 during germination. Heffron et al. found no effect of CwlJ2 on the biochemistry of cortex hydrolysis or on colony-forming efficiency of spores (11). Giebel et al. reported that loss of CwlJ2 caused a minor defect in germination kinetics and that in the absence of SleB and CwlJ1, further loss of CwlJ2 had a major effect on colony forming efficiency (10). SleL in Bacillus anthracis is proposed to be an N-acetylglucosaminidase (Fig. (Fig.1)1) whose role is to further degrade cortex fragments resulting from SCLE hydrolysis (18). SleL is not essential for the completion of germination but does promote the release of small muropeptides to the spore''s surrounding environment (18).This study reports the effects of multiple deletion mutations affecting GSLEs on spore germination efficiency and kinetics of cortex hydrolysis. The data confirm the dominant roles played by CwlJ1 and SleB in the initiation of cortex hydrolysis and the major role of SleL in release of small cortex fragments. A minor role of CwlJ2 in nutrient-triggered germination and the contributions of CwlJ1 and CwlJ2 to Ca2+-dipicolinic acid (DPA)-triggered germination were revealed.  相似文献   

18.
The hydrolysis of the bacterial spore peptidoglycan (cortex) is a crucial event in spore germination. It has been suggested that SleC and SleM, which are conserved among clostridia, are to be considered putative cortex-lytic enzymes in Clostridium perfringens. However, little is known about the details of the hydrolytic process by these enzymes during germination, except that SleM functions as a muramidase. Muropeptides derived from SleC-digested decoated spores of a Bacillus subtilis mutant that lacks the enzymes, SleB, YaaH and CwlJ, related to cortex hydrolysis were identified by amino acid analysis and mass spectrometry. The results suggest that SleC is most likely a bifunctional enzyme possessing lytic transglycosylase activity and N-acetylmuramoyl-L-alanine amidase activity confined to cross-linked tetrapeptide-tetrapeptide moieties of the cortex structure. Furthermore, it appears that during germination of Clostridium perfringens spores, SleC causes merely small and local changes in the cortex structure, which are necessary before SleM can function.  相似文献   

19.
In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C‐terminal lysostaphin‐like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.  相似文献   

20.
High-precision measurements of size changes of individual bacterial spores based on ellipse fitting to bright-field images recorded with a digital camera were employed to monitor the germination of Bacillus spores with a precision of ∼5 nm. To characterize the germination of individual spores, we recorded bright-field and phase-contrast images and found that the timing of changes in their normalized intensities coincided, so the bright-field images can be used to characterize spore size and refractility changes during germination. The major conclusions from this work were as follows. (i) The sizes of germinating B. cereus spores were nearly unchanged until Trelease, the time of the completion of CaDPA (a 1:1 chelate of Ca2+ and dipicolinic acid [DPA]) release after addition of nutrient germinants. (ii) The minor axis of germinating B. cereus spores rapidly increased by ∼50 nm in a few seconds right after Trelease, while the major axis was slightly decreased or unchanged. Both the minor and major axes remained unchanged for a further 30 to 45 s and then increased by 100 to 200 nm by Tlys, the time of completion of cortex lysis. (iii) Individual spores in a population showed significant heterogeneity in the timing of germination events, such as Trelease and Tlys, but also variation in size changes during germination. (iv) Bacillus subtilis wild-type spores, B. subtilis spores lacking the cortex-lytic enzyme CwlJ, and wild-type Bacillus megaterium spores showed similar kinetics of size changes during nutrient germination. The size increases in germinating spores probably result from uptake of water and cortex lysis after completion of CaDPA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号