首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Operational advantages in using CPA for the determination of enzymic azo reduction are described. Enzyme activity of the 9000g supernatant fractions of liver, with CPA as the substrate, demonstrated characteristics similar to those previously reported with other azo compounds as substrates.  相似文献   

2.
During the course of the transformation of 1,3-dichloro-2-propanol (DCP) into (R)-3-chloro-1,2-propanediol [(R)-MCP] with the cell extract of Corynebacterium sp. strain N-1074, epichlorohydrin (ECH) was transiently formed. The cell extract was fractionated into two DCP-dechlorinating activities (fractions Ia and Ib) and two ECH-hydrolyzing activities (fractions IIa and IIb) by TSKgel DEAE-5PW column chromatography. Fractions Ia and Ib catalyzed the interconversion of DCP to ECH, and fractions IIa and IIb catalyzed the transformation of ECH into MCP. Fractions Ia and IIa showed only low enantioselectivity for each reaction, whereas fractions Ib and IIb exhibited considerable enantioselectivity, yielding R-rich ECH and MCP, respectively. Enzymes Ia and Ib were isolated from fractions Ia and Ib, respectively. Enzyme Ia had a molecular mass of about 108 kDa and consisted of four subunits identical in molecular mass (about 28 kDa). Enzyme Ib was a protein of 115 kDa, composed of two different polypeptides (about 35 and 32 kDa). The specific activity of enzyme Ib for DCP was about 30-fold higher than that of enzyme Ia. Both enzymes catalyzed the transformation of several halohydrins into the corresponding epoxides with liberation of halides and its reverse reaction. Their substrate specificities and immunological properties differed from each other. Enzyme Ia seemed to be halohydrin hydrogen-halide-lyase which was already purified from Escherichia coli carrying a gene from Corynebacterium sp. strain N-1074.  相似文献   

3.
Human uterine cervix possesses a high 12-lipoxygenase activity; this enzyme has been isolated in a purified form from the squamous epithelial region of human cervix and its major properties have been investigated. Enzyme activity was present in all subcellular fractions obtained by centrifugation; the highest specific activity was associated with the microsome fraction (160,000 X g pellet). Purification of the enzyme was achieved by acetone precipitation, ion exchange chromatography on CM-cellulose and affinity chromatography on linoleyl-aminoethyl-Sepharose. The product from the incubation of sodium [1-14C]arachidonate with crude enzyme extracts co-chromatographed with authentic 12-hydroxyeicosatetraenoic acid, but the purified enzyme gave a product that behaved like the 12-hydroperoxy derivative. The enzyme had optimum activity at pH 6.5, a Km of 15 microM for arachidonic acid and was stimulated by ATP and Ca2+. Enzyme activity was inhibited by esculetin, nordihydroguaiaretic acid, eicosatetraynoic acid, detergents at concentrations greater than 0.1% (w/v) and preincubation of substrate with GSH and GSH peroxidase. The occurrence of a high 12-lipoxygenase activity is discussed in relation to the specific physiological functions of this tissue.  相似文献   

4.
Plasma membrane fractions I and II isolated from bovine corpus luteum contain phosphoprotein phosphatases. Enzyme activities associated with both membrane fractions showed pH optima in the neutral range and were most active with phosphoprotamine as the exogenous substrate. The enzyme activity was partially inhibited by Co2+, Zn2+ and Fe2+. Dithioerythritol, glutathione (reduced) and 2-mercaptoethanol stimulated the enzyme activity, whereas N-ethylmaleimide and N-phenylmaleimide were inhibitory. Similarly, various cyclic nucleotides and nuclsoside triphosphates also inhibited phosphoprotein phosphatase activities. The phosphatase activity was also observed with endogenous phosphorylated membrane proteins as substrate. The endogenous phosphorylation of membranes was rapid and attained a maximal level after 15--20 min of incubation. Initially endogenous dephosphorylation was also very rapid, but did not reach completion. In addition to phosphoprotein phosphatase, membrane preparations also possessed very active cyclic-AMP-dependent protein kinase activity. Phosphoprotein phosphatase activity from plasma membranes was solubilized by ionic and nonionic detergents. Optimal solubilization was achieved with 0.1% sodium deoxycholate. Sucrose density gradient centrifugation of deoxycholate-solubilized fraction I and fraction II membranes resolved phosphoprotein phosphatase activity into two species with apparent sedimentation coefficients of 6.7 S (Mr 130000) and 4.8 S (Mr 90000). Cyclic-AMPstimulated protein kinase activity sedimented as a broad peak with a sedimentation coefficient of 5.5 S (Mr 110000).  相似文献   

5.
Trypsin-like enzyme activity in spent culture media from 3-d-old batch cultures of Bacteroides gingivalis W50 was measured by using the hydrolysis of N alpha-benzoyl-L-arginine-p-nitroanilide. The cell-free culture medium was fractionated by differential centrifugation at 10,000 g and 75,000 g, yielding two particulate fractions and a soluble supernatant fraction. About 80% of the total recoverable activity was associated with the particulate fractions, the remainder being in the supernatant. Electron microscopy of ruthenium-red/osmium stained ultrathin sections of the pellet fractions showed them to be composed of vesicular particles (extracellular vesicles), between 50 and 250 nm in diameter. Enzyme activity in all three fractions was enhanced by dithiothreitol. Gel-permeation chromatography of the soluble fraction yielded one peak of activity which contained 64 kDa and 58 kDa polypeptides. Enzyme activity from the vesicular fractions could be solubilized by sonication, giving a similar chromatographic profile to the supernatant fraction. The main peak of activity was composed of 64 kDa and 58 kDa polypeptides. In addition, there was a higher molecular mass enzyme activity peak composed of the 64 kDa and 58 kDa components along with 111 kDa, 93 kDa and 70 kDa polypeptides. We conclude that the trypsin-like enzyme of B. gingivalis is released as a soluble protein and is also associated with extracellular vesicles, in which it may exist as a soluble component and also as a protein complex.  相似文献   

6.
Chitinolytic systems of anaerobic polycentric rumen fungi of genera Orpinomyces and Anaeromyces were investigated in three crude enzyme fractions - extracellular, cytosolic and cell-wall. Endochitinase was found as a dominant enzyme with highest activity in the cytosolic fraction. Endochitinases of both genera were stable at pH 4.5-7.0 with optimum at 6.5. The Orpinomyces endochitinase was stable up to 50 degrees C with an optimum for enzyme activity at 50 degrees C; similarly, Anaeromyces endochitinase was stable up to 40 degrees C with optimum at 40 degrees C. The most suitable substrate for both endochitinases was fungal cell-wall chitin. Enzyme activities were inhibited by Hg(2+) and Mn(2+), and activated by Mg(2+) and Fe(3+). Both endochitinases were inhibited by 10 mmol/L SDS and activated by iodoacetamide.  相似文献   

7.
MeOH extracts, fractions and pure substances from Musanga cecropioides, Cecropia species and Crataegus oxyacantha /C. monogyna were screened by using an in vitro bio-assay based on the inhibition of Angiotensin Converting Enzyme (ACE), as measured from the enzymatic cleavage of the chromophore-fluorophore-labelled substrate dansyltriglycine into dansylglycine and diglycine. Phenolic acids showed no significant ACE-inhibition whereas flavonoids and proanthocyanidins demonstrated inhibitory activity at 0.33 mg/ml using this test system.  相似文献   

8.
The action of two lysophospholipases purified from beef liver on lysophosphatidylcholine in microsomal membranes has been studied. Enzyme I, which has been shown to be localized in the soluble fraction of the beef liver cell, has a higher specific activity on microsomal lysophosphatidylcholine than Enzyme II, which originates from the microsomal cell fraction. This trend is also observed with phosphatidylcholine liposomes and single bilayer vesicles in which lysophosphatidylcholine has been incorporated. At low mol fractions of lysophosphatidylcholine in liposomes, the maximum enzymatic rate is proportional to this mol fraction. Similar results are obtained with mixed micelles of lysophosphatidylcholine and Triton X-100. The results are explained in terms of a model in which the two-dimensional substrate density in the membrane surface controls the rate of enzyme action.  相似文献   

9.
The relationship between postnatal age and protein tyrosine kinase activity in synaptosomes prepared from the rat forebrain was studied. Synaptosomal particulate and soluble fractions, as well as total homogenates, the cell soluble fraction, and P3, were prepared from rats ranging in postnatal age from 5 to 60 days and analyzed for (a) tyrosine kinase activity using polyglutamyltyrosine (4:1) as the substrate, (b) the presence of endogenous substrates for tyrosine phosphorylation using polyclonal antibodies specific for phosphotyrosine, and (c) levels of pp60src. Enzyme activity, expressed per milligram of protein, in the total homogenate, P3, and both the cell and synaptosomal soluble fractions was highest in the brains of young animals (postnatal days 5-10) and decreased thereafter to adult levels. In contrast, tyrosine kinase activity in the synaptosomal particulate fraction exhibited a unique biphasic developmental profile, increasing to maxima at postnatal days 10 and 20 before decreasing to adult values. Endogenous substrates for tyrosine phosphorylation were identified by incubating subcellular fractions with 2 mM ATP in the presence of sodium orthovanadate and probing nitrocellulose blots of proteins separated by gel electrophoresis with antiphosphotyrosine antibodies. Several phosphotyrosine-containing proteins were detected in the synaptosomal particulate and P3 fractions, including proteins of Mr 180K, 145K, 120K, 100K, 77K, 68K, 62K, 54K, 52K, and 42K. In the cell soluble fraction a protein doublet of Mr 54/52K and a 120K protein were the major phosphotyrosine-containing proteins. The 54/52K doublet was the major protein tyrosine kinase substrate in the synaptosomal soluble fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
CMP-beta-N-acetylneuraminic acid (CMP-neuNAc) is the substrate for the sialylation of glycoconjugates by sialyltransferases in microbes and higher eukaryotes. CMP-neuNAc synthetase catalyzes the formation of this substrate, CMP-neuNAc, from CTP and neuNAc. In this report we describe the purification of CMP-neuNAc synthetase from bovine anterior pituitary glands. The enzyme was purified by ion exchange, gel filtration, and affinity chromatography. The protein was homogeneous on SDS-PAGE with a molecular weight of 52 kDa, a subunit size similar to that of the E.coli K1 (48.6 kDa). The identity of the 52 kDa protein band was confirmed by native gel electrophoresis in that the position of the enzyme activity in gel slices coincided with the position of major bands in the stained gel. Photoaffinity labeling with 125I-ASA-CDP ethanolamine resulted in the modification of a 52 kDa polypeptide that was partially protected against modification by the substrate CTP. Enzyme activity in crude fractions could be adsorbed onto an immunoadsorbent prepared from antibody against the purified 52 kDa protein. Taken together these data suggest that the 52 kDa polypeptide purified by this procedure described in this report is indeed CMP-neuNAc synthetase. The active enzyme chromatographed on a gel filtration column at 158 kDa suggesting it exists in its native form as an oligomer.  相似文献   

11.
An enzyme which catalyzes the reduction of methylglyoxal to lactaldehyde has been isolated and purified from goat liver to apparent homogeneity. NADH was found to be a better substrate than NADPH for methylglyoxal reduction. Stoichiometrically equivalent amounts of lactaldehyde and NAD are formed from methylglyoxal and NADH. Enzyme activity was located only in the soluble supernatant fractions of liver cells. Of the various carbonyl compounds tested, methylglyoxal was found to be the best substrate. The pH optimum of the enzyme was found to be 6.5, and Km for methylglyoxal was 0.4 mM. The molecular weight of the enzyme was found to be 89000 by gel filtration on a Sephadex G-200 column. Electrophoresis on sodium dodecyl sulfate-polyacrylamide gel revealed that the enzyme is composed of two subunits. The enzyme is highly sensitive to sulfhydryl group reagents. The inactivation by p-chloromercuribenzoate could be substantially protected by methylglyoxal in combination with NADH, indicating a possible involvement of one or more sulfhydryl group(s) at the active site of the enzyme.  相似文献   

12.
Neutrophils assayed with nitro blue tetrazolium (NBT) exhibit intracellular rather than extracellular superoxide-generating activity when stimulated with phorbol myristate acetate. Enzyme activity is stimulated by anionic detergents, reversibly inhibited by 2',3'-NADPH dialdehyde, and present in equal levels in membrane fractions obtained from phorbol myristate acetate-stimulated and resting cell suspensions. Solubilized membrane shows enzyme activity co-eluting on molecular sieving columns with the cytochrome b redox component of the oxidoreductase complex. Enzyme activity was resolved free of the cytochrome b component following passage of solubilized membrane extracts through QAE-Sephadex anion exchange columns. Enzyme activity measured by the NBT assay appears to be that associated with the NADPH binding protein of the oxidoreductase complex. When exposed to NBT and NADPH this component of the oxidoreductase generates superoxide independent of cytochrome b.  相似文献   

13.
1. Collagen glucosyltransferase was demonstrated to be associated with pig platelets by using a specific assay for the synthesis of [(14)C]glucosylgalactosylhydroxylysine. 2. This enzyme from pig platelets required denatured collagen as substrate and the reaction was not inhibited by the presence of triple-helical collagen. These observations indicate that the platelet enzyme cannot form either an enzyme-substrate complex or an enzyme-inhibitor complex with triple-helical collagen. 3. Platelets were fractionated by sucrose-density-gradient centrifugation after either lysis by a glycerol-loading technique or homogenization. Assays of subcellular fractions for collagen glucosyltransferase activity indicated that the enzyme was localized predominantly in the cytosolic fraction and less than 5% of the activity was associated with the membrane fractions. 4. Enzyme assays were carried out on platelet-rich plasma and platelet-poor plasma prepared from pig and human blood. These analyses indicated that most of the collagen glucosyltransferase activity of platelet-rich plasma was in a soluble form and only about 10% was associated with platelets. 5. Comparative studies on the enzyme activity in plasma and platelets of various animal species revealed marked variation, with the guinea pig exhibiting the highest activity. In most cases there was a correlation between the activity found in platelets and plasma, but little species variation was noted in enzyme amounts detected in bone-marrow preparations. 6. The results described here are discussed in the context of the proposal that collagen glucosyltransferase might play a role in mediating collagen-platelet adhesion.  相似文献   

14.
Chitin synthesis was studied in both yeast and hyphae of the dimorphic fungus Candida albicans. Incorporation of N-acetyl-d-[1-(3)H]glucosamine ([(3)H]GluNAc) into an acid-alkali-insoluble fraction was 10 times greater in hyphal-phase cells. A crude preparation of chitin synthetase was obtained from sonically treated protoplasts of both forms of Candida. Enzyme activity, which was determined by using [(14)C]UDP-GLuNAc as a substrate, was exclusively associated with the 80,000 x g pellet from sonically treated protoplasts of both forms. It was determined that enzyme activity (nanomoles of [(14)C]UDP-GluNAc incorporated per milligram of protein) was approximately 2 times greater in hyphae versus yeast cells. Enzyme activity in both yeast and hyphae increased six- to sevenfold when the enzyme preparations were preincubated with trypsin. A vacuolar fraction, obtained from yeast cells but not from hyphae, stimulated enzyme activity when incubated with either yeast or hyphal enzyme preparations. Membrane fractions from protoplasts coated with [(3)H]concanavalin A before disruption were isolated by Renografin density gradient centrifugation. Chitin synthetase activity was preferentially associated with the concanavalin A-labeled fraction, suggesting that the enzyme was located on the plasma membrane. In addition, enzyme activity in protoplasts treated with cold glutaraldehyde before disruption was significantly greater than in protoplasts that were sonically disrupted and then treated with cold glutaraldehyde, indicating that the enzyme resides on the inner side of the plasma membrane.  相似文献   

15.
In both supernatant and sediment of thyroid tissue homogenate phospholipase and lysophospholipase activities were demonstrated. In the supernatant, using 1-acyl-2[1-14C]linoleoyl-sn-glycero-3-phosphorocholine in the presence of sodium taurocholate, phospholipase A1 activity with pH optima at 3.6 and 4.8 and phospholipase A2 activity with pH optima at 3.6 and 5.7 were found. The sediment showed mainly phospholipase A2 activity with a pH optimum at pH 6.5. Lysophospholipase activity (optimum pH 7--8), USING 1-[9,10-(3)H]stearyl-sn-glycero-3-phosphorocholine as a substrate was present in both supernatant and sediment. Enzyme assays performed on subcellular fractions suggest the soluble phospholipases to be of lysosomal origin and the solubilized phospholipase A2 activity of homogenate sediment to be of microsomal origin. Incubations with 3H-14C mixed labelled phosphatidylcholine further confirmed the above observations.  相似文献   

16.
Enzyme activities that catalyzed the covalent attachment of ubiquitin to protein substrates (ubiquitin-protein ligase, UbL) were purified from the extracts of human red blood cells. These activities required the presence of ubiquitin-activating enzyme and ATP for activity. Four fractions (UbL A, B1, B2, and C) were resolved and showed different specificities toward added substrates [carboxymethylated bovine serum albumin (CM-BSA), G-actin, lysozyme, and alpha-lactalbumin]. The enzyme fractions gave different products with a given substrate. UbL A and UbL B1 were exclusively active with CM-BSA and alpha-lactalbumin, respectively. UbL B2 was most active toward CM-BSA with substantial activities to G-actin and alpha-lactalbumin and with no activity to lysozyme. UbL C showed significant activities with all four substrates, having a highest activity toward CM-BSA. There were many endogenous proteins present in the erythrocyte extract which were efficient substrates for ubiquitin conjugation. In particular, a pair of substrates were identified from erythrocyte extracts which were far more efficient substrates than the denatured proteins exogenously added.  相似文献   

17.
Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous [3H]phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of [3H]phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that [3H]phosphatidylinositol 4-phosphate is a better substrate than [3H]phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.  相似文献   

18.
1. In liver, rumen epithelium and kidney cortex of the sheep, a dehydrogenase active against dl-3-hydroxybutyrate occurred in both the cytosol and particulate fractions of the tissues. In brain, heart, skeletal and smooth muscles, the enzyme occurred only in the particulate fraction. 2. Enzyme activity in the cytoplasmic fraction of liver and rumen epithelium was similar with either d(-)-3-hydroxybutyrate or dl-3-hydroxbutyrate, but was less with acetoacetate as the substrate. The cytosol fraction of kidney cortex showed very little activity with d(-)-3-hydroxybutyrate, confirming that most of the activity with dl-3-hydroxybutyrate was with the l(+) isomer in this tissue. 3. 3-Hydroxybutyrate dehydrogenase activities in the cytosol and particulate fractions of liver, rumen epithelium and kidney cortex and in the particulate fraction of brain tissue were not stimulated by phosphatidylcholine, unlike the enzyme in sheep muscle and in tissues of other species. 4. The activity of 3-hydroxybutyrate dehydrogenase was not increased significantly in any of the tissues of ketonaemic sheep. 5. Comparison of rates of 3-hydroxybutyrate production in vivo with the enzyme activity in ketogenic tissue suggested that in sheep the maximum rate of production might be limited by this activity.  相似文献   

19.
The distribution of cyclic AMP-dependent protein kinase activity in porcine thyroid glands has been studied. Enzyme activity catalyzing phosphorylation of exogenous substrate (protamine) from ATP, and cyclic AMP binding were determined in parallel in subcellular fractions purified by differential centrifugation and flotation on sucrose density layers. Both activities were found in all the studied fractions; they were quantitatively the highest in the cytosol but particles showed the highest specific activities.Latent protein-kinase activity was unmasked by action of detergents on microsomes (× 5–10 fold) and solubilized (85 to 99 p. cent of the initial total activity). Cyclic AMP binding capacity was also recovered in detergent-treated microsomal extracts in spite of reduced cyclic AMP binding in the presence of detergent.Protein kinase activity and cyclic AMP-binding proteins were less represented in purified nuclei than in microsomes. Again both activities were unmasked by detergent.Preparations highly enriched in Golgi membranes were compared to rough microsomal preparations. Higher protein kinase activity was detected in rough microsomes as compared to Golgi membranes, whereas the reverse was true for cyclic AMP binding. Both activities were equalized after detergent treatment. Since unmasking of protein kinase activity was the highest in Golgi membranes, this fraction contains more enzyme activity and cyclic AMP binding capacity than rough microsomes.The localization of endogeneous protein substrates of cyclic AMP-dependent protein kinases was investigated using purified soluble protein kinase subcellular fractions. The better endogeneous substrates seemed to be localized in the rough microsomal and in the nuclear fractions.  相似文献   

20.
The integral membrane protein responsible for the transport and phosphorylation of D-mannitol in Escherichia coli, the mannitol-specific Enzyme II of the phosphotransferase system (Mr = 60,000), has been purified to apparent homogeneity using a modification of a previously published procedure (Jacobson, G. R., Lee, C. A., and Saier, M. H., Jr. (1979) J. Biol. Chem. 254, 249-252). The purified enzyme was dependent on Lubrol PX and phospholipid for maximal activity. It catalyzed both the phosphoenolpyruvate- and the mannitol 1-phosphate-dependent phosphorylation of D-mannitol with high specificity for the accepting sugar and the phosphoryl donor. Both mannitol and mannitol 1-phosphate gave strong substrate inhibition at neutral pH in the transphosphorylation reaction catalyzed by the purified mannitol Enzyme II, while no substrate inhibition by mannitol was observed for the phosphoenolpyruvate-dependent reaction. The purified enzyme did not catalyze hydrolysis of mannitol 1-phosphate, a product of both reactions. Antibody directed against the mannitol Enzyme II inhibited the phosphoenolpyruvate-dependent activity to a greater extent than the transphosphorylation activity. Limited proteolysis with trypsin rapidly inactivated both purified and membrane-bound mannitol Enzyme II, and the purified protein was concomitantly cleaved into fragments with apparent molecular weights of about 29,000. These results show that although the mannitol Enzyme II is an integral membrane protein, a considerable portion of its polypeptide chain must also extend into a hydrophilic environment, presumably the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号