首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft survival after 348 consecutive first cadaver-donor renal transplants was significantly improved by HLA matching when recipients who had received pretransplant blood transfusions were matched with their kidney donor for two HLA-B locus antigens. No other type of HLA matching significantly improved graft survival in transfused recipients nor did any type of HLA matching in non-transfused recipients. Matching for one HLA-DR antigen had no benefit in transfused recipients. Only two patients received kidneys matched for both DR antigens and only two of those in whom DR matching had been performed had not been transfused. These results indicate that pretransplant blood transfusion and selection of graft recipients predominantly on the basis of HLA-B matching has significantly reduced the renal graft rejection rate in Newcastle upon Tyne over two years. Thus, HLA-B antigen matching should be adopted as the main criterion for kidney sharing between transplant centres.  相似文献   

2.
3.
Exploring new immunosuppressive strategies inducing donor-specific hyporesponsiveness is an important challenge in transplantation. For this purpose, a careful immune monitoring and graft histology assessment is mandatory. Here, we report the results of a pilot study conducted in twenty renal transplant recipients, analyzing the immunomodulatory effects of a protocol based on induction therapy with rabbit anti-thymocyte globulin low doses, sirolimus, and mofetil mycophenolate. Evolution of donor-specific cellular and humoral alloimmune response, peripheral blood lymphocyte subsets and apoptosis was evaluated. Six-month protocol biopsies were performed to assess histological lesions and presence of FOXP3+ regulatory T cells (Tregs) in interstitial infiltrates. After transplantation, there was an early and transient apoptotic effect, mainly within the CD8+ HLADR+ T cells, combined with a sustained enhancement of CD4+ CD25(+high) lymphocytes in peripheral blood. The incidence of acute rejection was 35%, all steroid sensitive. Importantly, only pretransplant donor-specific cellular alloreactivity could discriminate patients at risk to develop acute rejection. Two thirds of the patients became donor-specific hyporesponders at 6 and 24 mo, and the achievement of this immunologic state was not abrogated by prior acute rejection episodes. Remarkably, donor-specific hyporesponders had the better renal function and less chronic renal damage. Donor-specific hyporesponsiveness was inhibited by depleting CD4+ CD25(+high) T cells, which showed donor-Ag specificity. FOXP3+ CD4+ CD25(+high) Tregs both in peripheral blood and in renal infiltrates were higher in donor-specific hyporesponders than in nonhyporesponders, suggesting that the recruitment of Tregs in the allograft plays an important role for renal acceptance. In conclusion, reaching donor-specific hyporesponsiveness is feasible after renal transplantation and associated with Treg recruitment in the graft.  相似文献   

4.

Background

Whole genome microarray meta-analyses of 1030 kidney, heart, lung and liver allograft biopsies identified a common immune response module (CRM) of 11 genes that define acute rejection (AR) across different engrafted tissues. We evaluated if the CRM genes can provide a molecular microscope to quantify graft injury in acute rejection (AR) and predict risk of progressive interstitial fibrosis and tubular atrophy (IFTA) in histologically normal kidney biopsies.

Methods

Computational modeling was done on tissue qPCR based gene expression measurements for the 11 CRM genes in 146 independent renal allografts from 122 unique patients with AR (n = 54) and no-AR (n = 92). 24 demographically matched patients with no-AR had 6 and 24 month paired protocol biopsies; all had histologically normal 6 month biopsies, and 12 had evidence of progressive IFTA (pIFTA) on their 24 month biopsies. Results were correlated with demographic, clinical and pathology variables.

Results

The 11 gene qPCR based tissue CRM score (tCRM) was significantly increased in AR (5.68 ± 0.91) when compared to STA (1.29 ± 0.28; p < 0.001) and pIFTA (7.94 ± 2.278 versus 2.28 ± 0.66; p = 0.04), with greatest significance for CXCL9 and CXCL10 in AR (p <0.001) and CD6 (p<0.01), CXCL9 (p<0.05), and LCK (p<0.01) in pIFTA. tCRM was a significant independent correlate of biopsy confirmed AR (p < 0.001; AUC of 0.900; 95% CI = 0.705–903). Gene expression modeling of 6 month biopsies across 7/11 genes (CD6, INPP5D, ISG20, NKG7, PSMB9, RUNX3, and TAP1) significantly (p = 0.037) predicted the development of pIFTA at 24 months.

Conclusions

Genome-wide tissue gene expression data mining has supported the development of a tCRM-qPCR based assay for evaluating graft immune inflammation. The tCRM score quantifies injury in AR and stratifies patients at increased risk of future pIFTA prior to any perturbation of graft function or histology.  相似文献   

5.
In renal transplantation, the unresponsiveness of patients undergoing chronic antibody mediated rejection (CAMR) to classical treatment stress on the need for accurate biomarkers to improve its diagnosis. We aim to determine whether microRNA expression patterns may be associated with a diagnosis of CAMR. We performed expression profiling of miRNAs in peripheral blood mononuclear cells (PBMC) of kidney transplant recipients with CAMR or stable graft function. Among 257 expressed miRNAs, 10 miRNAs associated with CAMR were selected. Among them, miR-142-5p was increased in PBMC and biopsies of patients with CAMR as well as in a rodent model of CAMR. The lack of modulation of miR-142-5p in PBMC of patients with renal failure, suggests that its over-expression in CAMR was associated with immunological disorders rather than renal dysfunction. A ROC curve analysis performed on independent samples showed that miR-142-5p is a potential biomarker of CAMR allowing a very good discrimination of the patients with CAMR (AUC = 0.74; p = 0.0056). Moreover, its expression was decreased in PHA-activated blood cells and was not modulated in PBMC from patients with acute rejection, excluding a non-specific T cell activation expression. The absence of modulation of this miRNA in immunosuppressed patients suggests that its expression was not influenced by treatment. Finally, the analysis of miR-142-5p predicted targets under-expressed in CAMR PBMC in a published microarray dataset revealed an enrichment of immune-related genes. Altogether, these data suggest that miR-142-5p could be used as a biomarker in CAMR and these finding may improve our understanding of chronic rejection mechanisms.  相似文献   

6.
Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.  相似文献   

7.
Acute rejection (AR) is a strong risk factor for chronic rejection in renal transplant recipients. Accurate and timely diagnosis of AR episodes is very important for disease control and prognosis. Therefore, objectively evaluated the immune status of patients is essential in the field of post-transplantation treatment. This longitudinal study investigated the usefulness of five biomarkers, human leukocyte antigen (HLA)-G5 and sCD30 level in sera, intracellular adenosine triphosphate (iATP) release level of CD4(+) T cells, and granzyme B/perforin expression in peripheral blood mononuclear cells (PBMCs) and biopsies, to detect AR and the resolution of biomarkers in a total of 84 cases of renal transplantation. The data demonstrated that recipients with clinical or biopsy proven rejection significantly increased iATP release level of CD4(+) T cells, and elevated sCD30 but lowered HLA-G5 level in sera compared with individuals with stable graft function. Expression levels of granzyme B and perforin were also elevated in PBMCs and graft biopsies of AR patients. Taken together, we identified that upregulation of sCD30, iATP, granzyme B, perforin, and downregulation of HLA-G5 could provide valuable diagnostic standards to identify those recipients in the risk of AR. And iATP may be a better biomarker than others for predicting the graft rejection episode.  相似文献   

8.
In rats, tolerance to MHC-incompatible renal allografts can be induced by the administration of anti-donor class II Abs on the day of transplantation. In this study we explored the mechanisms involved in the maintenance phase of this tolerance by analyzing intragraft gene expression profiles by microarray in long-term accepted kidneys. Comparison of the gene expression patterns of tolerated to syngeneic kidneys revealed 5,954 differentially expressed genes (p < 0.05). Further analysis of this gene set revealed a key role for the wingless-type (WNT) signaling pathway, one of the pivotal pathways involved in cell regulation that has not yet been implicated in transplantation. Several genes within this pathway were significantly up-regulated in the tolerated grafts, particularly matrix metalloproteinase 7 (MMP7; fold change > 40). Analysis of several other pathway-related molecules indicated that MMP7 overexpression was the result of the noncanonical WNT signaling pathway. MMP7 expression was restricted to vascular smooth muscle cells and was specific to anti-class II Ab-induced tolerance, as it was undetectable in other models of renal and heart transplant tolerance and chronic rejection induced across the same strain combination. These results suggest a novel role for noncanonical WNT signaling in maintaining kidney transplant tolerance in this model, with MMP7 being a key target. Determining the mechanisms whereby MMP7 contributes to transplant tolerance may help in the development of new strategies to improve long-term graft outcome.  相似文献   

9.
10.
Kidney transplant is the reference treatment for patients with end-stage renal disease, but patients may develop long-term rejection of the graft. However, some patients do not reject the transplant, but instead are operationally tolerant state despite withdrawal of immunosuppressive treatment. In this second article we outline a microarray-based identification of key leader genes associated respectively to rejection and to operational tolerance of the kidney transplant in humans by utilizing a non/statistical bioinformatic approach based on the identification of "key genes," either as those mostly changing their expression, or having the strongest interconnections. A uniquely informative picture emerges on the genes controlling the human transplant from the detailed comparison of these findings with the traditional statistical SAM (Tusher et al. 2001 Proc Natl Acad Sci USA 98:5116-5121) analysis of the microarrays and with the clinical study carried out in the accompanying part I article.  相似文献   

11.
12.
13.
For end-stage renal diseases, kidney transplantation is the most efficient treatment. However, the unexpected rejection caused by inflammation usually leads to allograft failure. Thus, a systems-level characterization of inflammation factors can provide potentially diagnostic biomarkers for predicting renal allograft rejection. Serum of kidney transplant patients with different immune status were collected and classified as transplant patients with stable renal function (ST), impaired renal function with negative biopsy pathology (UNST), acute rejection (AR), and chronic rejection (CR). The expression profiles of 40 inflammatory proteins were measured by quantitative protein microarrays and reduced to a lower dimensional space by the partial least squares (PLS) model. The determined principal components (PCs) were then trained by the support vector machines (SVMs) algorithm for classifying different phenotypes of kidney transplantation. There were 30, 16, and 13 inflammation proteins that showed statistically significant differences between CR and ST, CR and AR, and CR and UNST patients. Further analysis revealed a protein-protein interaction (PPI) network among 33 inflammatory proteins and proposed a potential role of intracellular adhesion molecule-1 (ICAM-1) in CR. Based on the network analysis and protein expression information, two PCs were determined as the major contributors and trained by the PLS-SVMs method, with a promising accuracy of 77.5 % for classification of chronic rejection after kidney transplantation. For convenience, we also developed software packages of GPS-CKT (Classification phenotype of Kidney Transplantation Predictor) for classifying phenotypes. By confirming a strong correlation between inflammation and kidney transplantation, our results suggested that the network biomarker but not single factors can potentially classify different phenotypes in kidney transplantation.  相似文献   

14.
15.
16.
Survival of solid organ grafts depends on life-long immunosuppression, which results in increased rates of infection and malignancy. Induction of tolerance to allografts would represent the optimal solution for controlling both chronic rejection (CR) and side effects of immunosuppression. Although spontaneous "operational tolerance" can occur in human kidney transplantation, the lack of noninvasive peripheral blood biological markers of this rare phenomenon precludes the identification of potentially tolerant patients in whom immunosuppression could be tapered as well as the development of new tolerance inducing strategies. Here, the potential of high throughput microarray technology to decipher complex pathologies allowed us to study the peripheral blood specific gene expression profile and corresponding EASE molecular pathways associated to operational tolerance in a cohort of human kidney graft recipients. In comparison with patients with CR, tolerant patients displayed a set of 343 differentially expressed genes, mainly immune and defense genes, in their peripheral blood mononuclear cells (PBMC), of which 223 were also different from healthy volunteers. Using the expression pattern of these 343 genes, we were able to classify correctly >80% of the patients in a cross-validation experiment and classified correctly all of the samples over time. Collectively, this study identifies a unique PBMC gene signature associated with human operational tolerance in kidney transplantation by a classical statistical microarray analysis and, in the second part, by a nonstatistical analysis.  相似文献   

17.
有效地控制慢性移植排斥反应和诱导移植免疫耐受是当今移植免疫学研究的热点。基因工程由于在克服移植免疫排斥反应和诱导免疫耐受中具有独特优势而倍受人们关注。然而,在临床应用基因治疗克服移植器官排斥之前,必须确定有效、安全的载体及适宜的靶基因。对该领域的新进展进行了简要综述。  相似文献   

18.
In chronic kidney disease (CKD), progressive nephron loss causes glomerular sclerosis, as well as tubulointerstitial fibrosis and progressive tubular injury. In this study, we aimed to identify molecular changes that reflected the histopathological progression of renal tubulointerstitial fibrosis and tubular cell damage. A discovery set of renal biopsies were obtained from 48 patients with histopathologically confirmed CKD, and gene expression profiles were determined by microarray analysis. The results indicated that hepatitis A virus cellular receptor 1 (also known as Kidney Injury Molecule-1, KIM-1), lipocalin 2 (also known as neutrophil gelatinase-associated lipocalin, NGAL), SRY-box 9, WAP four-disulfide core domain 2, and NK6 homeobox 2 were differentially expressed in CKD. Their expression levels correlated with the extent of tubulointerstitial fibrosis and tubular cell injury, determined by histopathological examination. The expression of these 5 genes was also increased as kidney damage progressed in a rodent unilateral ureteral obstruction model of CKD. We calculated a molecular score using the microarray gene expression profiles of the biopsy specimens. The composite area under the receiver operating characteristics curve plotted using this molecular score showed a high accuracy for diagnosing tubulointerstitial fibrosis and tubular cell damage. The robust sensitivity of this score was confirmed in a validation set of 5 individuals with CKD. These findings identified novel molecular markers with the potential to contribute to the detection of tubular cell damage and tubulointerstitial fibrosis in the kidney.  相似文献   

19.
Chronic allograft nephropathy (CAN) represents a frequent and irreversible cause of long-term renal graft loss. TGF-beta1 is a key profibrogenic cytokine associated with CAN pathogenesis. Because of clinical diagnostic inaccuracy, protocol biopsy has been suggested to be a beneficial method for early CAN detection. Protocol core biopsy was carried out in 67 consecutive cyclosporine-based immunosuppression-treated kidney transplant recipients with stable renal function 12 months after renal transplantation. Biopsy specimens were analyzed morphologically according to Banff-97' criteria and immunohistologically for TGF-beta1 staining. The data obtained were correlated with plasma TGF-beta1 levels and clinical data. CAN (grade I-III) was found in 51 patients (76 %). CAN grade I was found to be the most frequent one (44 %). A normal finding within the graft was made in only 12 patients (18 %). Clinically silent acute rejection Banff IA was present in 4 patients (6 %). In 8 patients (12 %) with CAN, borderline changes were present. We found a significant correlation between CAN grade and creatinine clearance, as measured by the Cockroft-Gault formula (p<0.01) as well as body mass index (p<0.01). There was a significant correlation between chronic vasculopathy (Banff cv) and creatinine clearance, and between the degree of TGF-beta1 staining and chronic vasculopathy (p<0.01). There were no relations between morphological findings and TGF-beta1 plasma levels, cyclosporine levels, plasma lipids, HLA-mismatches, panel reactive antibodies (PRA), proteinuria, and the donor's age. In conclusion, CAN is a frequent finding in protocol kidney graft biopsies 12 months after transplantation. TGF-beta1 tissue expression is linked with chronic vasculopathy.  相似文献   

20.
Fine-needle aspiration (FNA) is a well-recognized technique for sampling solid organs. It is used in renal transplantation to clarify the cause of a poorly functioning graft. Differential scoring techniques with respect to peripheral blood cell populations, and immunocytochemistry have been employed in this context. We describe the use of simple morphological criteria alone in renal transplant FNA. We compare these with needle biopsy and clinical parameters and show their value in the detection of active cellular rejection. Their limitations are discussed within the framework of other patterns of transplant pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号