共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The structure of the RecA-single-stranded DNA complex was investigated by studying the fluorescence emission of poly(deoxy-1,N6-ethenoadenylic acid (poly(d epsilon A)), a fluorescent derivative of poly(dA), under various viscosity conditions. The fluorescence intensity and average lifetime of poly(d epsilon A) are much smaller than those of nonpolymerized monoethenonucleotides (1,N6-ethenoadenosine 5'-triphosphate and 1,N6-ethenoadenine deoxyribose 5'-monophosphate) at low viscosity and reflect intramolecular base-base collisions in the polymer. They considerably increased upon RecA binding, both in the presence and absence of cofactor ATP or adenosine 5'-O-(3-thiotriphosphate). This increase, as well as the increase in fluorescence anisotropy upon RecA binding, was very similar to that which resulted from sucrose addition to free poly(d epsilon A). These observations point to a decrease in the mobility of DNA bases upon RecA binding. In the presence of cofactor, the fluorescence features became independent of viscosity. This strongly suggests the absence of base motion of significant amplitude on the time scale of the fluorescence lifetime (about 10 ns). In the absence of cofactor, however, these features remained sensitive to viscosity, implying residual local motions of the bases. Such cofactor-dependent rigid attachment of DNA bases to stiff phosphate backbone could facilitate the search for homology between two DNA molecules during recombination. 相似文献
3.
A synthetic DNA triple helix sequence was formed by annealing a pyrimidinic 21 mer single strand sequence onto the complementary purinic sequence centred on a 27 mer duplex DNA. Melting of the third strand was monitored by UV spectrophotometry in the temperature range 10-90 degrees C. The T(m) of the triplex, 37 degrees C, was well separated from the onset of duplex melting. When the same triple helix was formed on the duplex bearing one nick in the center of the pyrimidinic sequence the T(m) of the triplex was shifted to approximately 32 degrees C and overlapped the melting of the duplex. We have used fluorescence polarization anisotropy (FPA) measurements of ethidium bromide (EB) intercalated in duplex and triplex samples to determine the hydrodynamic parameters in the temperature range 10-40 degrees C. The fluorescence lifetime of EB in the samples of double and triple stranded DNA is the same (21.3 +/- 0.5 ns) at 20 degrees C, indicating that the geometries of the intercalation sites are similar. The values for the hydration radii of the duplex, normal triplex, and nicked triplex samples were 10.7 +/- 0.2, 12.2 +/- 0.2, and 12.0 +/- 0.2 A. FPA measurements on normal triplex DNA as a function of temperature gave a melting profile very similar to that derived by UV absorption spectroscopy. For the triplex carrying a nick, the melting curve obtained using FPA showed a clear shift compared with that obtained for the normal triplex sample. The torsional rigidity of the triplex forms was found to be higher than that of the duplex form. 相似文献
4.
The rotational dynamics of short DNA fragments with or without intrinsic curvature were studied using time-resolved phase fluorimetry of intercalated ethidium with detection of the anisotropy. Parameters determined were the spinning diffusion coefficient of the DNA fragments about the long axis and the zero-time ethidium fluorescence anisotropy. We find a significant decrease in the spinning diffusion coefficient for all curved fragments compared to the straight controls. This decrease is likewise evident in rotational diffusion coefficients computed from DNA structures obtained by a curvature prediction program for these sequences. Using a hinged-cylinder model, we can identify the change in rotational diffusion coefficient with a permanent bend of 13-16 degrees per helix turn for the sequences studied. Moreover, for some of the curved fragments an increased flexibility has to be assumed in addition to the permanent bend in order to explain the data. 相似文献
5.
Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spectroscopy 总被引:5,自引:0,他引:5
C R Guest R A Hochstrasser C G Dupuy D J Allen S J Benkovic D P Millar 《Biochemistry》1991,30(36):8759-8770
The interaction of a fluorescent duplex DNA oligomer with the Klenow fragment of DNA polymerase I from Escherichia coli has been studied in solution by using time-resolved fluorescence spectroscopy. An aminonaphthalenesulfonate (dansyl) fluorescent probe was linked by a propyl chain to a C5-modified uridine base located at a specific site in the primer strand of the DNA oligomer. The fluorescent oligomer bound tightly to the Klenow fragment (KD = 7.9 nM), and the probe's position within the DNA-protein complex was varied by stepwise elongation of the primer strand upon addition of the appropriate deoxynucleoside triphosphates. The decay of the total fluorescence intensity and the polarization anisotropy were measured with a picosecond laser and a time-correlated single photon counting system. The fluorescence lifetimes, the correlation time for internal rotation, and the angular range of internal rotation varied according to the probe's position within the DNA-protein complex. These results showed that five or six bases of the primer strand upstream of the 3' terminus were in contact with the protein and that within this contact region there were differences in the degree of solvent accessibility and the closeness of contact. Further, a minor binding mode of the DNA-protein complex was identified, on the basis of heterogeneity of the probe environment observed when the probe was positioned seven bases upstream from the primer 3' terminus, which resulted in a distinctive "dip and rise" in the anisotropy decay. Experiments with an epoxy-terminated DNA oligomer and a site-directed mutant protein established that the labeled DNA was binding at the polymerase active site (major form) and at the spatially distinct 3'----5' exonuclease active site (minor form). The abundance of each of these distinct binding modes of the DNA-protein complex was estimated under solution conditions by analyzing the anisotropy decay of the dansyl probe. About 12% of the labeled DNA was bound at the 3'----5' exonuclease site. This method should be useful for investigating the editing mechanism of this important enzyme. 相似文献
6.
7.
Bahr M Valis L Wagenknecht HA Weinhold E 《Nucleosides, nucleotides & nucleic acids》2007,26(10-12):1581-1584
In this work, fluorescence anisotropy was used to study DNA binding of the DNA methyltransferase M.TaqI. For this purpose short DNA molecules labelled with three different fluorophores (Cy3, thiazole orange, and ethidium bromide) were prepared in various topologies and their suitability for detection of DNA-protein complex formation was investigated. 相似文献
8.
Fluorescence resonance energy transfer (FRET) experiments were carried out in the absence of nucleotide (rigor) or in the presence of MgADP between fluorescent donor probes (IAEDANS (5((((2-iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid) at Cys-374 or DANSYL (5-dimethylamino naphthalene-1-(N-(5-aminopentyl))sulfonamide) at Gln-41 of actin and acceptor molecules (FHS (6-[fluorescein-5(and 6)-carboxamido] hexanoic acid succinimidyl ester) at Lys-553 of skeletal muscle myosin subfragment 1. The critical F?rster distance (R(0)) was determined to be 44 and 38 A for the IAEDANS-FHS and DANSYL-FHS donor-acceptor pairs, respectively. The efficiency of energy transfer between the acceptor molecules at Lys-553 of myosin and donor probes at Cys-374 or Gln-41 of actin was calculated to be 0.78 +/- 0.01 or 0.94 +/- 0.01, respectively, corresponding to distances of 35.6 +/- 0.4 A and 24.0 +/- 1.6 A, respectively. MgADP had no significant effect on the distances observed in rigor. Thus, rearrangements in the acto-myosin interface are likely to occur elsewhere than in the lower 50-kDa subdomain of myosin as its affinity for actin is weakened by MgADP binding. 相似文献
9.
The proteins XPA and RPA are assumed to be involved in primary damage recognition of global genome nucleotide excision repair. XPA as well as RPA have been each reported to specifically bind DNA lesions, and ternary complex formation with damaged DNA has also been shown. We employed fluorescence anisotropy measurements to study the DNA-binding properties of XPA and RPA under true equilibrium conditions using damaged DNA probes carrying a terminal fluorescein modification as a reporter. XPA binds with low affinity and in a strongly salt-dependent manner to DNA containing a 1,3-d(GTG) intrastrand adduct of the anticancer drug cisplatin or a 6-nt mismatch (K(D) = 400 nM) with 3-fold preference for damaged vs undamaged DNA. At near physiological salt conditions binding is very weak (K(D) > 2 microM). RPA binds to damaged DNA probes with dissociation constants in the range of 20 nM and a nearly 15-fold preference over undamaged DNA. The presence of a cisplatin modification weakens the affinity of RPA for single-stranded DNA by more than 1 order of magnitude indicating that binding to the lesion itself is not a driving force in damage recognition. Our fluorescence anisotropy assays also show that the presence of XPA does not enhance the affinity of RPA for damaged DNA although both proteins interact. In contrast, cooperative binding of XPA and RPA is observed in EMSA. Our results point to a damage-sensing function of the XPA-RPA complex with RPA mediating the important DNA contacts. 相似文献
10.
Gene 5 protein bound to both linear and circular single-stranded DNA and saturated the DNA at a protein-to-DNA weight ratio of 7–8. The viscosity of a complex of the protein with single-stranded DNA was initially less than that of the DNA and slowly increased with time suggesting that the complex adopts its final hydrodynamic shape very slowly. This shape change was confirmed by gradient centrifugation. The complex has a more extended structure than DNA alone accounting for its high viscosity and low S value. Gene 5 protein also bound to linear double-stranded DNA though not as strongly as to single-stranded DNA. The protein decreased the transition temperature, Tm, for viscosity loss of double-stranded DNA by 20 °C in 1 and 10 mm salt at a protein-to-DNA ratio of 2.2. At these low ratios there was no decrease in the hyperchromic Tm at 260 nm. At higher ratios of protein to DNA, the hyperchromic Tm was decreased to a constant value and not by a constant amount. Under no conditions was gene 5 protein able to completely separate the complementary strands of double-stranded DNA or to renature denatured DNA. 相似文献
11.
Investigation of DNA dynamics and drug-DNA interaction by steady state fluorescence anisotropy.
下载免费PDF全文

We have used steady-state fluorescence polarization anisotropy (FPA) of ethidium probe molecules bound to DNA to investigate DNA-DNA interactions and the effect of high densities of intercalating drugs on the internal motions of DNA responsible for depolarization of the ethidium fluorescence. To calibrate the method, we examined the effect of DNA length on (FPA) using DNA varying in size from 10-150 base pair. The association of approximately 30 base pair DNA at high concentrations was then detected by its effect on (FPA). With sample concentrations approaching those commonly used in various physical experiments (NMR, Raman) significant DNA-DNA interactions are observed. With high molecular weight DNA (greater than 500 base pair), the limiting value of the (FPA) (0.23) is due to internal motions of the DNA (and bound chromophores). The (FPA) of ethidium probe molecules (1 drug/200 base pair) is unaffected by the addition of high levels (1 drug/2 base pair) proflavine. This indicates that either the elastic properties of DNA are unaffected by high densities of intercalated drug or that the depolarization of the ethidium fluorescence is due to highly localized motions of the base pairs that are unperturbed by binding of drugs at neighboring sites. 相似文献
12.
13.
Prior to undergoing postsynthetic 3'-5' editing (proofreading), a defective DNA primer terminus must be transferred from the 5'-3' polymerase active site to a remote 3'-5' exonuclease site. To elucidate the mechanisms by which this occurs, we have used time-resolved fluorescence spectroscopy to study the interaction of dansyl-labeled DNA primer/templates with the Klenow fragment of Escherichia coli DNA polymerase I. The dansyl probe is positioned such that when the DNA substrate occupies the polymerase active site, the probe is solvent-exposed and possesses a short average fluorescence lifetime (4.7 ns) and extensive angular diffusion (42.5 degrees). Conversely, when the DNA substrate occupies the exonuclease active site, the probe becomes buried within the protein, resulting in an increase in the average lifetime (14.1 ns) and a decrease in the degree of angular diffusion (14.4 degrees ). If both polymerase and exonuclease binding modes are populated (lower limit approximately 5%), their markedly different fluorescence properties cause the anisotropy to decay with a characteristic "dip and rise" shape. Nonlinear least-squares analysis of these data recovers the ground-state mole fractions of exposed (x(e)) and buried (x(b)) probes, which are equivalent to the equilibrium proportions of the DNA substrate bound at the polymerase and exonuclease sites, respectively. The distribution between the polymerase and exonuclease binding modes is given by the equilibrium partitioning constant K(pe) (equal to x(b)/x(e)). The important determinants of the proofreading process can therefore be identified by changes made to either the protein or DNA that perturb the partitioning equilibrium and hence alter the magnitude of K(pe). 相似文献
14.
Woll MP De Cotiis DA Bewley MC Tacelosky DM Levenson R Flanagan JM 《Biochemistry》2011,50(41):8780-8791
Neuronal calcium sensor-1 (NCS-1) is a small calcium binding protein that plays a key role in the internalization and desensitization of activated D2 dopamine receptors (D2Rs). Here, we have used fluorescence anisotropy (FA) and a panel of NCS-1 EF-hand variants to interrogate the interaction between the D2R and NCS-1. Our data are consistent with the following conclusions. (1) FA titration experiments indicate that at low D2R peptide concentrations calcium-loaded NCS-1 binds to the D2R peptide in a monomeric form. At high D2R peptide concentrations, the FA titration data are best fit by a model in which the D2R peptide binds two NCS-1 monomers sequentially in a cooperative fashion. (2) Competition FA experiments in which unlabeled D2R peptide was used to compete with labeled peptide for binding to NCS-1 shifted titration curves to higher NCS-1 concentrations, suggesting that the binding of NCS-1 to the D2R is highly specific and that binding occurs in a cooperative fashion. (3) N-Terminally myristoylated NCS-1 dimerizes in a calcium-dependent manner. (4) Co-immunoprecipitation experiments in HEK-293 confirm that NCS-1 can oligomerize in cell lysates and that oligomerization is dependent on calcium binding and requires functionally intact EF-hand domains. (5) Ca(2+)/Mg(2+) FA titration experiments revealed that NCS-1 EF-hands 2-4 (EF2-4) contributed to binding with the D2R peptide. EF2 appears to have the highest affinity for Ca(2+), and occupancy of this site is sufficient to promote high-affinity binding of the NCS-1 monomer to the D2R peptide. Magnesium ions may serve as a physiological cofactor with calcium for NCS-1-D2R binding. Finally, we propose a structural model that predicts that the D2R peptide binds to the first 60 residues of NCS-1. Together, our results support the possibility of using FA to screen for small molecule drugs that can specifically block the interaction between the D2R and NCS-1. 相似文献
15.
The conformational flexibility of the DNA double helix is of great interest because of its potential role in protein recognition, packaging into chromosomes, formation of photodefects, and interaction with drugs. Theory finds that DNA is very flexible; however, there is a scarcity of experimental results that examine intrinsic properties of the DNA bases for the inherent flexibility in solution. We have studied the dynamics of poly(dA).poly(dT) and (dA)20.(dT)20 in a 50 mM cacodylate, 0.1 M NaCl, pH 7 buffer by using the time-correlated picosecond fluorescence anisotropy of thymine selectively excited at 293 nm. For both nucleic acids, a large-amplitude biphasic decrease in the anisotropy is observed that has a very fast, large-amplitude component on the picosecond time scale and a slower, smaller-amplitude component on the nanosecond time scale. These modes are sensitive to sucrose concentration, and are greatly attenuated at 77% sucrose by volume. This observation suggests that motions of the bases make a significant contribution to the observed fluorescence depolarization (in the absence of sucrose). Measurements on the single-stranded systems poly(dT) and (dT)20 reveal a much smaller amplitude of the very fast depolarization mode. These observations are consistent with a mechanism that involves concerted motions in the interior of the double-stranded systems. 相似文献
16.
Using HPLC and 31P NMR spectroscopy on a chemically synthesized asymmetric mixture of the diastereoisomers of thymidyl(3'----5')thymidyl-O-methyl phosphate absolute configuration has been correlated with chromatographic mobility. The methyl phosphotriester system in alkylated DNA which is repaired by the Ada regulatory protein of E. coli has consequently been established to possess the Sp configuration. 相似文献
17.
Methyl phosphotriesters in alkylated DNA are repaired by the Ada regulatory protein of E. coli. 总被引:20,自引:12,他引:20
下载免费PDF全文

The E. coli ada+ gene product that controls the adaptive response to alkylating agents has been purified to apparent homogeneity using an overproducing expression vector system. This 39 kDa protein repairs 0(6)-methylguanine and 0(4)-methylthymine residues in alkylated DNA by transfer of the methyl group from the base to a cysteine residue in the protein itself. The Ada protein also corrects one of the stereoisomers of methyl phosphotriesters in DNA by the same mechanism, while the other isomer is left unrepaired. Different cysteine residues in the Ada protein are used as acceptors in the repair of methyl groups derived from phosphotriesters and base residues. 相似文献
18.
Tubulin dimer dissociation detected by fluorescence anisotropy 总被引:1,自引:0,他引:1
We have demonstrated a concentration-dependent dissociation of bovine brain tubulin dimer covalently labeled with 5-[(4,6-dichlorotriazin-2-yl)amino]fluorescein (DTAF) or with fluorescein isothiocyanate (FITC) by fluorescence anisotropy and size-exclusion HPLC. The fluorescence anisotropy values decreased to a limiting value upon dilution of tubulin from 10(-5) to 8 x 10(-8) M. A dissociation constant in 0.1 M Pipes, pH 6.9, 1 mM EGTA, and 1 mM MgSO4 at 20 degrees C was estimated to be (8.4 x 10(-7) +/- (0.4 x 10(-7) M. Control experiments using monomeric and other dimeric proteins, urea-denatured tubulin, and DTAF-tubulin diluted into solutions of bovine serum albumin or unlabeled tubulin were consistent with the finding that the changes in anisotropy upon dilution are due to protein dissociation. These results were supported by size-exclusion HPLC data where an increase in the elution volume of DTAF-tubulin and FITC-tubulin was observed with decreasing protein concentrations. Reversibility of the dissociation process and the lack of denaturation at high dilution were shown by the ability of reconcentrated protein to assemble into microtubules to about the same extent as undiluted protein. Fluorescent lifetimes and limiting anisotropy values were found to be approximately identical at different tubulin concentrations, indicating that the anisotropy changes reflect changes in size or rotational correlation time of the protein. Studies on the effects of tubulin ligands and promoters or inhibitors of assembly demonstrated that their effects on tubulin dimer-monomer equilibria are small but reproducible.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
The interaction between nonhistone chromosomal protein HMG1 and plasmid DNA was studied by optical and hydrodynamical methods. The recombinant protein HMG1 produced by yeast Pichia pastoris strain was used. We have shown that according to the CD spectra local conformational changes in DNA helix occur in the region of DNA-protein interaction. These changes are most significant at r < 3 (w/w). Both gel-shift assay and ultracentrifugation, as well as CD data, indicate that protein-protein interactions between HMG1 molecules play a major role in the formation of DNA-protein complexes. It is suggested that the protein C-terminus may affect HMG1-DNA binding not only by a direct interaction with DNA helix, but also by protein-protein interactions. 相似文献
20.
Interaction of S-acyl fatty acid synthase thioester hydrolase with fatty acid synthase. Direct measurement of binding by fluorescence anisotropy 总被引:1,自引:0,他引:1
R J Foster R F Bonsall A J Poulose P E Kolattukudy 《The Journal of biological chemistry》1985,260(3):1386-1389
Treatment of S-acyl fatty acid synthase thioester hydrolase from the uropygial gland of Peking duck with pyrenebutylmethanephosphonofluoridate resulted in inactivation of the enzyme with covalent attachment of the pyrene derivative to the enzyme. One mole of the derivative was attached/mol of protein, most probably at the active serine. When avian fatty acid synthase was added to the modified thioesterase, the fluorescence anisotropy of the pyrene derivative increased dramatically. That this increase represented the functionally significant binding between the two proteins was suggested by the fact that increasing salt concentration resulted in concomitant loss in enzyme activity and fluorescence anisotropy. As the synthase concentration increased, anisotropy increased giving a saturation pattern. From a Scatchard plot analysis the association constant for the binding of the two proteins was calculated to be 10(6) M-1 and one-to-one stoichiometry was shown for this association. These results show that fluorescence anisotropy of the pyrene derivative attached to the thioesterase can be used to directly measure the binding of this enzyme to fatty acid synthase. 相似文献