首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium perfringens cells were cultivated on a large scale using an automatic system. Neuraminidase secreted by the cells into the culture medium was purified 380 000-fold by: precipitation with ammonium sulfate between 50 and 85% saturation, filtration on Sephadex G-75, electrophoresis on polyacrylamide gel, and by isoelectric focusing. Three enzyme fractions with different migration rates were obtained by preparative disc electrophoresis in polyacrylamide gel, and five fractions with isoelectric points between pH 4.7 and 5.4 were observed after isoelectric focusing. This microheterogeneity disappeared after denaturation of the enzyme in 0.1% sodium dodecylsulfate or 8M urea. The isoelectric point of the denatured enzyme corresponded to pH 4.3. All enzyme fractions were identical with regard to their immunological and kinetic properties; they had the same molecular weights. The origin of the different "conformers" of neuraminidase is discussed. The existence of genuine isoenzymes could largely be excluded. The yield of neuraminidase was 65%, which corresponded to about 10 mg of pure enzyme from 100 l of culture medium. The enzyme was free of protease and various other glycosidase activities. The neuraminidase preparation appeared not to be contaminated by other proteins as judged by electrophoretic analysis using either the native enzyme or the enzyme denatured by sodium dodecylsulfate or urea; ultracentrifugation; chromatography on Sephadex G-200; and immunological methods. The molecular weights of the native or denatured enzyme were found to be in the range between 60 000 and 69 000 (on an average 63 750) using four independent methods. The existence of subunits of neuraminidase was excluded. The neuraminidase exhibited a spec. act. of 580 or 615 U/mg protein with glycopeptides from edible birds' nests or sialyllactose, respectively, as substrates. Additional kinetic properties and the UV-absorption spectrum of the enzyme are described.  相似文献   

2.
Clostridium perfringens sialidase was isolated from a culture medium of bacterial cells by ammonium sulfate precipitation (42-85%), followed by purification through Sephadex G-75 gel chromatography, DEAE A-50 anion exchange chromatography, FPLC medium pressure anion exchange chromatography and finally FPLC medium pressure isochromatofocussing. From 9 l culture medium 1.17 mg sialidase was isolated with a specific activity of 295 U/mg. The enzyme appeared to be homogeneous by analytical polyacrylamide gel electrophoresis. The molecular mass was measured to be 66 kDa. Km values ranging from 0.6 to 1.6mM were determined for several oligosaccharides as substrates. The enzyme catalyzed transglycosylation reactions with methanol as a nucleophilic reagent competitive with water. In the enzymatic hydrolysis of the (3'-methoxyphenyl)glycoside of alpha-N-acetylneuraminic acid, increase of methanol concentration had no effect on the release of 3-methoxyphenol. This finding suggests that the formation of the enzyme-glycon intermediate is the rate-determining step for this substrate.  相似文献   

3.
Pullulanase (pullulan 6-glucanohydrolase EC 3.2.1.41) was purified about 290-fold from the culture fluid of Bacillus No. 202-1 by DEAE-cellulose adsorption, acetone fractionation, (NH4) 2SO4 precipitation and DEAE--cellulose column chromatography followed by Sephadex G-200 molecular sieve chromatography. The enzyme gave a single band of protein by disc polyacrylamide gel electrophoresis. The molecular weight was estimated as 92 000 by sodium dodecyl sulfate gel electrophoresis. The isolectric point was lower than pH 2.5. The optimum pH for enzyme action was about 8.5-9.0. The action of the enzyme on amylopectin and glycogen resulted in increase in the iodine coloration of 85% and 70%, respectively. The enzyme completely hydrolyzed 1,6-alpha-glucosidic linkages in amylopectin, glycogen and pullulan.  相似文献   

4.
The occurrence of the two molecular forms, I and II, in the beta-glucuronidase of the liver (hepatopancreas) from the marine mollusc Littorina littorea L. has been demonstrated for the first time. The two forms have been purified 355-fold and 1262-fold, respectively. Form I and II of beta-glucuronidase behave differently on DEAE-cellulose chromatography, polyacrylamide gel disc electrophoresis, isoelectric focusing (pH 5.5 and 4.2, respectively), optimum pH (4.4 and 3.4--4.1, respectively), thermal stability, Km (1.2 mM and 0.5 mM with p-nitrophenyl beta-D-glucuronide, 0.3 mM and 0.15 mM with phenolphthalein beta-D-glucuronide as substrates for form I and II, respectively) and V. Their molecular weight, estimated by gel filtration through Sephadex G-200, was about 250000 for both forms. Several subunits were separated by polyacrylamide gel electrophoresis in presence of sodium dodecyl sulphate. This beta-glucuronidase is a glycoprotein, but sialic acid(s) were not detected. The enzyme was very active on synthetic substrates and also on hexasaccharides and tetrasaccharides containing glucuronic acid residues with beta 1 leads to 3 linkages; it had practially no activity on certain glycosaminoglycans. Hg2+ and glucaro-1,4-lactone were very effective inhibitors of this enzyme; the latter by a competitive mechanism.  相似文献   

5.
Prenyltransferase (EC 2.5.1.1) has been purified to homogeneity from the supernatant fraction of yeast by ammonium sulfate fractionation, diethylaminoethyl-cellulose and hydroxylapatite chromatography, and column isoelectric focusing techniques. The active enzyme from isoelectric focusing columns emerged as a single symmetrical peak with specific activities 15- to 35-fold higher than previously reported preparations. The enzyme was found to be homogeneous by continuous polyacrylamide gel electrophoresis at pH 8.4 and discontinuous polyacrylamide gel electrophoresis at pH 6.9 as well as sodium dodecyl sulfate polyacrylamide electrophoresis at pH 7.0. By means of gel chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis, the protein was shown to be a dimer with a molecular weight of 84,000 plus or minus 10%. The isoelectric point of the enzyme was determined to be 5.3. The enzyme synthesizes farnesyl and geranylgeranyl pyrophosphates from dimethylallyl, geranyl, and farnesyl pyrophosphates. Michaelis constants for the enzyme were 4, 8, and 14 mu M for isopentenyl, dimethylallyl, and geranyl pyrophosphates, respectively.  相似文献   

6.
alpha-Glucosidase (EC 3.2.1.20) was purified to homogeneity from logarithmically growing cells of Saccharomyces carlsbergensis. The purification involved the following steps: (a) ammonium sulfate fractionation; (b) Sephadex G-100 chromatography; (c) DEAE-cellulose chromatography; and (d) hydroxylapatite chromatography. This procedure gave a preparation judged to be greater than 98% pure by Na-DodSO4-polyacrylamide gel electrophoresis. The enzyme was shown to be a monomer of 63 000 daltons by gel filtration on Sephacryl S-200 under native conditions and by polyacrylamide gel electrophoresis under denaturing conditions. The Km values of the enzyme for the substrates maltose and p-nitrophenyl alpha-D-glucoside were found to be 1.66 X 10(-2) and 3.1 X 10(-4) M, respectively. The corresponding Vmax value for maltose was 44.8 X 10(-6) mol min(-1) mg(-1) and that for p-nitrophenyl alpha-D-glucoside was 134 X 10(-6) mol min-1 mg-1. The pH optimum for the purified enzyme was found to be between pH 6.7 and 6.8. The enzyme has an absolute anomeric specificity for alpha-glycosidic linkages and appears to recognize a glucosyl residue in alpha linkage on the nonreducing end of its substrate. For the strain used in this study, which carries the MAL 6 locus, only a single form of the enzyme was detected.  相似文献   

7.
1. The neutral collagenase released into the culture medium by explants of ehrumatoid synovial tissue has been purified by ultrafiltration and column chromatography, utilising Sephadex G-200, Sephadex QAE A-50 and Sephadex G-100 superfine. 2. The final collagenase preparation had a specific activity against thermally reconstituted collagen fibrils of 312 mug collagen degraded min-1 mg enzyme protein-1, representing more than a 1000-fold increase over that of the active culture medium. 3. Electrophoresis in polyacrylamide disc-gels with and without sodium dodecyl sulphate showed the enzyme to migrate as a single protein band. Elution experiments from polyacrylamide gels and chromatography columns have provided no evidence for the existence of more than one collagenase. 4. The molecular weight of the enzyme, as determined by dodecylsulphate-polyacrylamide gel electrophoresis, was 33000. 5. Data obtained from sutdies with the ion-exchange resin and from gel electrophoresis in acid and alkaline buffer systems suggested a basically charged enzyme. 6. It did not hydrolyse the synthetic collagen peptide Pz-Pro-Leu-Gly-Pro-D-Arg and non-specific protease activity was absent. 7. The collagenase attacked undenatured collagen in solution at 25 degrees C resulting in a 58% loss of viscosity and producing the two characteristic products TCA(3/4) and TCB(1/4). 8. At 37 degrees C and pH 8.0 both reconstituted collagen fibrils and gelatin were degraded to peptides of less than 10000 molecular weight. 9. As judged by the release of soluble hydroxyproline peptides and electron microscopic appearances the enzyme degraded human insoluble collagens derived from tendon and soft juxta-articular tissues although rates of attack were less than with reconstituted fibrils. 10. The data suggests that pure rheumatoid synovial collagenase at 37 degrees C and neutral pH can degrade gelatin, reconstituted fibrils and insoluble collagens without the intervention of non-specific proteases. 11. The different susceptibilities of various collagenous substrates to collagenase attack are discussed.  相似文献   

8.
Sorbitol dehydrogenase (EC 1.1.1.14) was isolated from bovine brain and purified 3,000-fold to apparent homogeneity, as judged by polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 36 units/mg of protein; a molecular weight of 39,000 for each of the four identical subunits and 155,000 for the intact enzyme were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel exclusion chromatography, respectively. The presence of one Zn2+ per subunit was confirmed by atom absorption spectroscopy; inactivation of the enzyme by metal-chelating agents points to the essential role that Zn2+ plays in the catalytically competent enzyme. The enzyme is also inactivated by thiol-blocking reagents; with respect to inactivation by sodium pyrophosphate, sorbitol dehydrogenase is different from closely related alcohol dehydrogenase.  相似文献   

9.
F Ling  Y Inoue    A Kimura 《Applied microbiology》1990,56(12):3830-3834
An adenosine-assimilating bacterium, Klebsiella sp. strain LF1202, inducibly formed a novel nucleoside phosphorylase which acted on both purine and pyrimidine nucleosides when the cells were cultured in medium containing adenosine as a sole source of carbon and nitrogen. The enzyme was purified (approximately 83-fold, with a 17% activity yield) to the homogeneous state by polyacrylamide gel electrophoresis. The molecular weight of the purified enzyme was calculated to be 125,000 by gel filtration of Sephadex G-200 column chromatography, although the enzyme migrated as a single protein band with a molecular weight of 25,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis; thus, it was thought to consist of five identical subunits. Besides purine nucleosides (adenosine, inosine, and guanosine), the purified enzyme also acted on pyrimidine nucleosides such as uridine, 2'-deoxyuridine, and thymidine. The purified enzyme catalyzed the synthesis of adenine arabinoside, a selective antiviral pharmaceutic agent, from uridine arabinoside and adenine.  相似文献   

10.
A medium was developed to obtain maximum yields of extracellular amylase from Bacteroides amylophilus 70. Crude enzyme preparation, obtained by ammonium sulfate precipitation of cell-free broth, contained six amylolytic isoenzymes that were detected by isoelectric focusing and polyacrylamide gel electrophoresis. One of these amylases was purified by diethylaminoethyl-Sephadex A-50 ion-exchange chromatography and Sephadex G-200 gel filtration techniques. Some properties of the purified extracellular alpha-amylase were: optimum pH, 6.3; optimum temperature, 43 degrees C: PH stability range, 5.8 to 7.5; isoelectric point, pH 4.6; molecular weight, 92,000 (by sodium dodecyl sulfatedisc gel electrophoresis); and sugars causing inhibition, cyclomaltoheptaose, cyclomaltohexaose, and alpha-d-phenylglucoside. In addition, Ca2+ and Co2+ were strong activators,and Hg2+ was a strong inhibitior; all other cations were slightly stimulatory. Dialysis against 0.01 M ethylenediaminetetraacetic acid caused a 58% loss of activity that was restored to 92% of the original by the addition of 0.04 M Ca2+. The enzyme affected a blue-value-reducing-value curve characteristic of alpha-type amylases. The relative rates of hydrolysis of amylose, soluble starch, amylopectin, and dextrin were 100, 97, 92, and 60%, respectively; Michaelis constants for these substrates were 18.2, 18.7, 18.2, and 16.7 mumol of d-glucosidic bond/liter, respectively. The enzyme degraded maize (corn) starch granules to some extent and had relatively little activity on potato starch granules.  相似文献   

11.
A four- to sixfold increase in specific activity of dihydrodipicolinic acid synthase was observed during sporulation of Bacillus cereus. The enzyme from cells harvested before and after the increase in specific activity appeared to be very similar as judged by pH optima, heat denaturation kinetics, apparent Michaelis constants, chromatography on diethylaminoethyl-cellulose and Sephadex G-200, and polyacrylamide gel electrophoresis. Studies with various combinations of amino acids and one of the enzyme substrates, pyruvate, failed to give evidence for control of the enzyme by activation, inhibition, repression, induction, or stabilization. Omission of calcium from the sporulation medium had no significant effect on the specific activity pattern of the enzyme as a function of age of culture.  相似文献   

12.
For the enzymatic production of chitosan oligosaccharides from chitosan, a chitosanase-producing bacterium, Bacillus sp. strain KCTC 0377BP, was isolated from soil. The bacterium constitutively produced chitosanase in a culture medium without chitosan as an inducer. The production of chitosanase was increased from 1.2 U/ml in a minimal chitosan medium to 100 U/ml by optimizing the culture conditions. The chitosanase was purified from a culture supernatant by using CM-Toyopearl column chromatography and a Superose 12HR column for fast-performance liquid chromatography and was characterized according to its enzyme properties. The molecular mass of the enzyme was estimated to be 45 kDa by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme demonstrated bifunctional chitosanase-glucanase activities, although it showed very low glucanase activity, with less than 3% of the chitosanase activity. Activity of the enzyme increased with an increase of the degrees of deacetylation (DDA) of the chitosan substrate. However, the enzyme still retained 72% of its relative activity toward the 39% DDA of chitosan, compared with the activity of the 94% DDA of chitosan. The enzyme produced chitosan oligosaccharides from chitosan, ranging mainly from chitotriose to chitooctaose. By controlling the reaction time and by monitoring the reaction products with gel filtration high-performance liquid chromatography, chitosan oligosaccharides with a desired oligosaccharide content and composition were obtained. In addition, the enzyme was efficiently used for the production of low-molecular-weight chitosan and highly acetylated chitosan oligosaccharides. A gene (csn45) encoding chitosanase was cloned, sequenced, and compared with other functionally related genes. The deduced amino acid sequence of csn45 was dissimilar to those of the classical chitosanase belonging to glycoside hydrolase family 46 but was similar to glucanases classified with glycoside hydrolase family 8.  相似文献   

13.
6-phosphogluconate (6PG) dehydrogenase (EC 1.1.1.44; 6PGD) was purified from chicken liver; some kinetic and characteristic properties of the enzyme were investigated. The purification procedure consisted of four steps: preparation of the hemolysate, ammonium sulfate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography, and Sephadex G-200 gel filtration chromatography. Thanks to the four consecutive procedures, product having a specific activity of 61 U (mg proteins)(-1), was purified 344-fold with a yield of 5.57%. Optimum pH, stable pH, optimum temperature, and KM and Vmax values for NADP+ and 6PG substrates were determined for the enzyme. Molecular weight of the enzyme was also determined by Sephadex G-200 gel filtration chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In addition, Ki values and inhibition types were estimated by means of Lineweaver-Burk graphs obtained for NADPH and CO2 products.  相似文献   

14.
An adenosine-assimilating bacterium, Klebsiella sp. strain LF1202, inducibly formed a novel nucleoside phosphorylase which acted on both purine and pyrimidine nucleosides when the cells were cultured in medium containing adenosine as a sole source of carbon and nitrogen. The enzyme was purified (approximately 83-fold, with a 17% activity yield) to the homogeneous state by polyacrylamide gel electrophoresis. The molecular weight of the purified enzyme was calculated to be 125,000 by gel filtration of Sephadex G-200 column chromatography, although the enzyme migrated as a single protein band with a molecular weight of 25,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis; thus, it was thought to consist of five identical subunits. Besides purine nucleosides (adenosine, inosine, and guanosine), the purified enzyme also acted on pyrimidine nucleosides such as uridine, 2'-deoxyuridine, and thymidine. The purified enzyme catalyzed the synthesis of adenine arabinoside, a selective antiviral pharmaceutic agent, from uridine arabinoside and adenine.  相似文献   

15.
Tomato alcohol dehydrogenase has been purified 99-fold by affinity chromatography on Blue Sepharose CL-6B with 37% yield. The enzyme so obtained is homogenous in polyacrylamide gel electrophoresis. By adding 20% glycerol to the extraction and purification buffers, an enzyme is obtained which is stable for several months at 4°. The molecular weight values determined by gel filtration (Sephadex G 200) and polyacrylamide gradient gel electrophoresis on one hand and by polyacrylamide gel electrophoresis in sodium dodecyl sulfate on the other, show that the enzyme exists in dimeric form.  相似文献   

16.
Spinach carbonic anhydrase has been purified by modification and extension of a published method (Pocker, Y., and Ng. J. S. U. (1973) Biochemistry 12, 5127-5134), using (NH4)2SO4 precipitation and chromatography on DEAE-cellulose, agarose, and DEAE-Sephadex. The enzyme so obtained was homogeneous by criteria of both standard and sodium dodecyl sulfate polyacrylamide gel electrophoresis and of constant specific activity throughout the elution profile on DEAE-Sephadex chromatography. The enzyme has an apparent Mr of 212,000 by gel filtration on Sephadex G-200, a Mr of 26,000 by sodium dodecyl sulfate electrophoresis, and each of the subunits contains approximately 1 g atom of zinc. These data and the excellent correlation between the number of lysine and arginine residues per subunit, and the number of tryptic peptides obtained by peptide mapping, suggest that spinach carbonic anhydrase is an octamer consisting of identical or very similar subunits. Its amino acid composition is similar to parsley carbonic anhydrase; both contain large numbers of half-cystine residues relative to erythrocyte carbonic anhydrases. The spinach enzyme is devoid of disulfide bonds. The enzyme is stable around neutrality at -14 degrees, as a suspension in saturated (NH4)2SO4 solution.  相似文献   

17.
Characterization of lysosomal acid lipase purified from rabbit liver   总被引:2,自引:0,他引:2  
Lysosomal acid lipase from rabbit liver was solubilized with digitonin and purified 25,000-fold by Bio-Gel A-1.5 m, DEAE Bio-Gel A and phenyl Sepharose column chromatographies, preparative slab gel electrophoresis and finally Affi-Gel Blue affinity column chromatography. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis both in the presence and absence of sodium dodecyl sulfate. The molecular weight of the acid lipase was estimated to be 42,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 40,000 by gel filtration on Bio-Gel A-0.5 m. The enzyme was a hydrophobic glycoprotein with an isoelectric point of 5.15-5.90. The purified enzyme hydrolyzed tri-, di-, and monoolein and cholesterol oleate, with apparent Vmax values of 5.41, 56.1, 21.7, and 3.25 mumol/min/mg protein, and Km values of 50, 70, 200, and 40 microM, respectively. It hydrolyzed 4-methylumbelliferyl esters with fatty acids of different lengths in the order, medium length chains greater than long chains much greater than short chains. It did not hydrolyze dipalmitoylphosphatidylcholine. Its activity was inhibited by micromolar concentrations of p-chloromercuriphenyl sulfonic acid and p-bromophenacyl bromide and millimolar concentrations of Cu2+ and diethylpyrocarbonate. The activities of the enzyme towards the five substrates listed above showed almost identical thermal stabilities, mobilities on polyacrylamide gel electrophoresis and inhibition by several inhibitors. These findings support the idea that one enzyme is involved in the hydrolysis of both acylglycerols and cholesterol esters in lysosomes.  相似文献   

18.
kappa-Carrageenase from Pseudomonas carrageenovora.   总被引:2,自引:0,他引:2  
A kappa-carrageenase was isolated from the cell-free medium of cultured Pseudomonas carrageenovora. From dodecylsulphate/polyacrylamide gel electrophoresis, a single protein (identified as the kappa-carrageenase) was detected in the medium. Activity against nominal carrageenan types and inspection of the products indicate the enzyme to be a kappa-carrageenase. Purification is described here by ammonium sulphate precipitation and subsequent CM-Sepharose CL-6B ion-exchange chromatography. Molecular weight was estimated as 35,000 by dodecylsulphate/polyacrylamide gel electrophoresis. Products of degradation were analysed by gel filtration, spectrophotometric assays and 13C nuclear magnetic resonance. These results are consistent with the product of limit digest being neocarrabiose 4-O-sulphate.  相似文献   

19.
Brain pyridoxal kinase. Purification and characterization   总被引:3,自引:0,他引:3  
Pyridoxal kinase has been purified 9000-fold from sheep brain. The purification procedure involves ammonium sulphate fractionation, DEAE-cellulose chromatography, affinity chromatography and Sephadex G-100 gel filtration. The final chromatography step yields a homogeneous preparation of high specific activity with a pI of 5. The molecular mass of the native enzyme was estimated to be approximately 80 kDa by 10-25% gradient polyacrylamide gel electrophoresis and Sephadex G-200 gel filtration. The subunit molecular mass was determined by sodium dodecyl sulphate (SDS)/polyacrylamide gel electrophoresis to be 40 kDa compared with a series of molecular mass standards. This indicates that pyridoxal kinase is a dimeric enzyme. Further results obtained from electron microscopy, using a negative staining technique, provide evidence that pyridoxal kinase exists as a dispherical subunit structure.  相似文献   

20.
Three fucoidanases were purified from Vibrio sp. N-5 by ammonium sulfate fractionation and chromatography with DEAE-Toyopearl 650 M, Sephacryl S-300 HR, and chromatofocusing. The purified enzymes gave a single band on disc polyacrylamide gel electrophoresis. The molecular weights of the enzymes, E-1, E-2, and E-3 were 39,500, 68,000, and 68,000, respectively, by SDS polyacrylamide gel electrophoresis and 158,000, 68,500, and 67,500 by gel filtration. The enzymes hydrolyzed gagome-fucoidan to give small oligosaccharides containing sulfate as main product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号