首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In higher plant cells, thus far only a few molecules have been inferred to be involved in microtubule organizing centers (MTOCs). Examination of a 49 kDa tobacco protein, homologous to a 51 kDa protein involved in sea urchin MTOCs, showed that it also accumulated at the putative MTOC sites in tobacco BY-2 cells. In this report, we show that the 49 kDa protein is likely to play a significant role in microtubule organization in vitro. We have established a system prepared from BY-2 cells, capable of organizing microtubules in vitro. The fraction, which was partially purified from homogenized miniprotoplasts (evacuolated protoplasts) by salt extraction and subsequent ion exchange chromatography, contained many particles of diameters about 1 micron after desalting by dialysis. When this fraction was incubated with purified porcine brain tubulin, microtubules were elongated radially from the particles and organized into structures similar to the asters observed in animal cells, and therefore also termed "asters" here. Since we could hardly detect BY-2 tubulin molecules in this fraction, the microtubules in "asters" seemed to be solely composed of the added porcine tubulin. Tubulin molecules were newly polymerized at the ends of the microtubules distal to the particles, and the elongation rate of microtubules was more similar to the reported rate of the plus-ends than that of the minus-ends in vitro. By fluorescence microscopy, the 49 kDa protein was shown to be located at the particles. Thus, its location at the centers of the "asters" suggests that the protein plays a role in microtubule organization in vitro.  相似文献   

2.
Association of the organization of microtubules (MTs) in the perinuclear region with a 49-kDa protein, that is immunologically cross-reactive to a 51-kDa protein isolated from sea urchin centrosomes and has been shown to play some roles in the organization of MTs in animal cells (Toriyama et al.: Cell Motil. Cytoskeleton 9, 117–128, 1988), was examined during the cell cycle transition from M phase to G1 phase using the highly synchronized tobacco BY-2 cells under confocal laser scanning microscopy (CLSM). After double staining with an antibody against the 51-kDa protein and with an antibody against tubulin, it was revealed that the 49-kDa protein was closely associated with the organization of MTs on the perinuclear regions during this stage under the CLSM. Notably, microfilaments (MFs) were not associated with the organization of MTs in the perinuclear region. This observation suggests that the 49-kDa protein plays a specific role in the organization of MTs on the perinuclear regions during the cell cycle transition from M phase to G1 phase. To understand the molecular characteristics of the 49-kDa protein further, the search for cDNA encoding the 49-kDa protein was conducted in a cDNA expression library prepared from rapidly growing tobacco BY-2 cells using monoclonal antibodies against the 51-kDa protein. Determination of the base sequence of the isolated clone revealed that it encodes protein synthesis elongation factor (EF)-1α. Thus the significance of the involvement of the 49-kDa protein as EF-1α in the organization of MTs on the perinuclear regions is discussed in relation to other cellular functions.  相似文献   

3.
The organization of microtubules (MTs) during the transition from the M phase to the G1 phase of the cell cycle was followed in highly synchronized suspension-cultured cells ofNicotiana tabacum L. (tobacco BY-2) by sequential treatment of cells with aphidicolin and propyzamide. Short MTs were first formed in the perinuclear regions at the expense of phragmoplasts, but when these short MTs elongated to reach the cell cortex, they grew parallel to the long axis and towards the distal end of the cells. As soon as, or shortly before the tips of elongated MTs reached the distal end, transverse cortical MTs were formed in the region proximal to the division plane. Thereafter, almost all cells retained cortical MTs which were transversely orientated to the long axis of cells and could be observed in the G1 phase. Thus, in the organization of cortical MTs, there are two steps that have been overlooked thus far. This novel observation provides a new scheme for the organization of cortical MTs, which could unify two contrasting hypotheses, i.e. organization in the perinuclear regions versus that in the cell cortex. These observations are discussed in relation to the microtubule-organizing center of plant cells.  相似文献   

4.
Dynamic changes of microtubule (MT) configuration have been examined during the cell cycle progression in tobacco BY-2 cells, which have been highly synchronized by aphidicolin treatment. Although it has been shown previously that four cell cycle stages display characteristic features of MTs (Hasezawa et al., 1991), distinct changes of MT configuration were observed at the interfaces of G2/M, M/G1 and G1/S, and the frequency of appearance of such distinct structures were quantitatively examined. Among others, it is the first observation that at M/G1 disintegrating phragmoplasts coexisted with short MTs in the perinuclear envelopes, but the MTs disappeared in the later stage, when cortical MTs were organizing. Thus it is supposed that cortical MTs originate from the transiently observed short MTs in the perinuclear region. This observation offered also an experimental system to analyze the molecular changes of MTs at the three interfaces during cell cycle progression in plant cells, as the mass culture of tobacco BY-2 cells is readily available.  相似文献   

5.
A microtubule-associated protein composed of a 200 kDa polypeptide (MAP200) was isolated from tobacco-cultured BY-2 cells. Analysis of the partial amino acid sequence showed that MAP200 was identical to TMBP200, the tobacco MOR1/XMAP215 homolog. Although several homolog proteins in animal and yeast cells have been reported to promote MT dynamics in vitro, no such function has been reported for plant homologs. Turbidity measurements of tubulin solution suggested that MAP200 promoted tubulin polymerization, and analysis by dark-field microscopy revealed that this MAP increased both the number and length of microtubules (MTs). Electron microscopy and experiments using a chemical crosslinker demonstrated that MAP200 forms a complex with tubulin. Throughout the cell cycle, some MAP200 colocalized with MT structures, including cortical MTs, the preprophase band, spindle and phragmoplast, while some MAP200 was localized in areas lacking MTs. Based on our biochemical and immunofluorescence findings, the function of MAP200 in MT polymerization is discussed.  相似文献   

6.
Summary To examine whether preprophase microtubule band (PPB) organization occurs by rearrangement of pre-existing, or by assembly of new microtubules (Mts), we treated root cells ofTriticum turgidum with taxol, which stabilizes pre-existing Mts by slowing their depolymerization. With taxol early preprophase cells failed to form a normal PPB and PPB narrowing was prevented in cells that had already formed a wide one. The PPB became persistent in prometaphase cells and the formation of multipolar prophase-prometaphase spindles was induced. These data favour the suggestion that PPB formation and narrowing, as well as prophase spindle development, are dynamic processes depending on continuous Mt assembly at the PPB site and in the perinuclear cytoplasm.Abbreviations Mt microtubule - MTOC microtubule organizing centre - PPB preprophase microtubule band - DMSO dimethyl sulfoxide  相似文献   

7.
J. Marc  Y. Mineyuki  B. A. Palevitz 《Planta》1989,179(4):530-540
The generation of the unique radial array of microtubules (MTs) in stomatal guard cells raises questions about the location and activities of relevant MT-organizing centers. By using tubulin immunofluorescence microscopy, we studied the pattern of depolymerization and reassembly of MTs in guard cells of Allium cepa L. Chilling at 0°C reduces the MTs to small remnants that surround the nuclear surface of cells in the early postcytokinetic stage, or form a dense layer along the central portion of the ventral wall in older guard cells. A rapid reassembly on rewarming restores either MTs extending from the nuclear surface randomly throughout the cytoplasm in very young cells, or an array of MTs radiating from the dense layer at the ventral wall later in development. A similar pattern of depolymerization and reassembly is achieved by incubation with 100 M colchicine followed by a brief irradiation with ultraviolet (UV) light. Incubation with 200 M colchicine leads to a complete depolymerization that leaves only a uniform, diffuse cytoplasmic fluorescence. Nonetheless, UV irradiation of developing guard cells induces the regeneration of a dense layer of MTs at the ventral wall. The layer is again positioned centrally along the wall, even if the nucleus has been displaced by centrifugation in the presence of cytochalasin D. Neither the regenerated layer nor the perinuclear MTs seen earlier are related to the staining pattern of serum 5051, which reportedly binds to centrosomal material in animal and plant cells. The results support the view that, soon after cytokinesis, a planar MT-organizing zone is established in the cortex along the central portion of the ventral wall, which then generates the radial MT array.Abbreviations GC guard cell - MT microtubule - MTOC microtubule-organizing center - UV ultraviolet To whom correspondence should be addressed.  相似文献   

8.
Previously we have demonstrated the dynamic change of microtubules (MTs) during cell cycle progression using highly synchronized tobacco BY-2 cells and characterized the specific transition points of MT organization (Hasezawa and Nagata, 1991). In this study the effect of okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, on such changes of MTs during cell cycle was examined. These experiments revealed that cell cycle was arrested before the formation of the preprophase band (PPB), at anaphase and at the border of M/G1. Although the block at the anaphase seemed to be analogous to that observed in animal cells (Yamashita et al., 1990), the other two blocks were specific to plant cells. It is interesting that these two blocks coincided with the transition points of MT organization, as revealed in the previous study (Hasezawa and Nagata, 1991). Thus it is proposed that phosphorylation is involved in MT organization, although the effect of OA has been shown mainly to be the activation of cdc-2/histone H1 kinase in animal cells. Another inhibitor of protein phosphatase 1 and 2A, calyculin A (CLA), showed very similar effects on the cell cycle progression. The use of such inhibitors to dissect the cell cycle progression of plant cells is discussed.  相似文献   

9.
Summary A one hour exposure to 3 M amiprophos-methyl (APM) depolymerizes all MT arrays in cells from higher plant suspension cultures. On removal of APM, MT repolymerization sites are detected using immunofluorescent staining. During interphase, Mt arrays return uniformly dispersed across the cell cortex with transverse arrays in elongated cells and random arrays in isodiametric cells. During cell division, MT arrays return as follows: Prophase-MT arrays return in association with the nuclear envelope. Metaphase-MTs return associated with chromosomes. Teleophase-MTs return in apparent association with the reforming nuclear envelope and as aberrant phragmoplasts. MTOCs in higher plant cells may be membrane associated at many stages in the cell cycle. Isolated, condensed chromosomes are capable of nucleating MTs, which can attain small, spindle-like configurations.Abbreviations APM Amiprophos-methyl - MT Microtubule - MTOC Microtubule organizing center - NS Nucleating site  相似文献   

10.
E. Schnepf 《Protoplasma》1984,120(1-2):100-112
Summary The microtubules (MTs) of developingSphagnum leaflets rearrange from the interphase array into the preprophase band without obvious participation of definite initiation sites. At late prophase, additional MTs appear along the nuclear envelope, with the same orientation as in the peripherally situated preprophase band. Spindle formation begins along the nuclear envelope; spindle MTs run perpendicular to preprophase band MTs and converge in several focus points with indistinct polar bodies. After cytokinesis, most spindle and phragmoplast MTs disappear. Interphase MTs reappear at first along the central part of the new cell wall, in a region which was occupied before by the initial phragmoplast; their orientation is perpendicular to the phragmoplast MTs. Also here, distinct MT organizing centers could not be observed. Then the MT spread out over the cell periphery. The observations suggest that diffuse MT organizing zones rather than definite MT organizing centers play a role in the rearrangement of the different MT arrays during the cell cycle.  相似文献   

11.
Summary Taxol stabilizes phragmoplast microtubules (Mts) in cytokinetic root cells ofTriticum, causing a delay in the rate of cytokinesis. As a result, the daughter nuclei acquire interphase appearance in mid- to late-cytokinetic taxol-affected cells much earlier than in control cells. Cortical Mts in such cells appear directly in the cell cortex, without the prior organization of a radial perinuclear Mt array as in control cells. These observations suggest that: (a) Whether perinuclear Mt assembly occurs or not in post-telophase cells is a matter of timing between the nuclear cycle and cytokinesis, (b) Mt organizing activity on the daughter nuclei surface is temporal, (c) Cortical Mts can be in situ assembled in the cortex of post-telophase cells of flowering plants without any participation of perinuclear Mts.Abbreviations Mt microtubules - MTOC microtubule organizing centre - DMSO dimethyl sulfoxide - EM electron microscope  相似文献   

12.
Summary This work examines mitosis in root-tip cells ofTriticum turgidum treated with the RNA synthesis inhibitor ethidium bromide, using tubulin immunolabeling and electron microscopy. The following aberrations were observed in ethidium bromideaffected cells: (1) incomplete chromatin condensation and nuclear-envelope breakdown; (2) delay of preprophase microtubule band maturation; (3) preprophase microtubule band assembly in cells displaying an interphase appearance of the nucleus; (4) prevention of the prophase spindle formation, caused by inhibition of perinuclear microtubule (Mt) formation and/or inability of the perinuclear Mts to assume bipolarity; (5) organization of an atypical metaphase spindle which is unable to arrange the chromosomes on the equatorial plane; (6) formation of an atypical perinuclear metaphase spindle in cells in which nuclear-envelope breakdown has been almost completely inhibited; (7) inhibition of the anaphase spindle formation as well as of anaphase chromosome movement; (8) disorganization of the atypical mitotic spindle during transition from mitosis to cytokinesis. The observations favor the following hypotheses. Nucleation of prophase spindle Mts is related to the mechanism that causes nuclear-envelope breakdown. The mitotic poles lack Mtnucleating and -organizing properties, and their function does not account for prophase and metaphase spindle assembly. The organization of the prophase spindle is not a prerequisite for the formation of the metaphase spindle; the metaphase spindle seems to be formed de novo by Mts nucleated on the nuclear envelope and/or in the immediate vicinity of chromosomes.Abbreviations 5-AU 5-aminouracil - EB ethidium bromide - EM electron microscopy - k-Mt kinetochore microtubule - Mt microtubule - MTOC microtubule-organizing center - NE nuclear envelope - NEB nuclear-envelope breakdown - PPB preprophase band of microtubules  相似文献   

13.
Centrin - higher plants - MTOCs - microtubules nucleation In most eukaryotic cells, the Ca(2+)-binding protein centrin is associated with structured microtubule-organizing centers (MTOCs) such as centrosomes. In these cells, centrin either forms centrosome-associated contractile fibers, or is involved in centrosome biogenesis. Our aim was to investigate the functions of centrin in higher plant cells which do not contain centrosome-like MTOCs. We have cloned two tobacco BY-2 centrin cDNAs and we show that higher plant centrins define a phylogenetic group of proteins distinct from centrosome-associated centrins. In addition, tobacco centrins were found primarily associated with microsomes and did not colocalize with gamma-tubulin, a known MTOC marker. While the overall level of centrin did not vary during the cell cycle, centrin was prominently detected at the cell plate during telophase. Our results suggest that in tobacco, the major portion of centrin is not MTOC-associated and could be involved in the formation of the cell plate during cytokinesis.  相似文献   

14.
Pavla Binarova  P. Rennie  L. Fowke 《Protoplasma》1994,180(3-4):106-117
Summary The localization in higher plant cells of phosphorylated proteins recognized by the monoclonal antibody MPM-2 was investigated, with particular attention to putative microtubule organizing centres (MTOCs). Immunofluorescence and immunogold electron microscopy showed that MPM-2 did not localize with most putative MTOCs in cells and protoplasts of the gymnospermPicea glauca and in cells of the angiospermVicia faba. The distribution of phosphoproteins detected by MPM-2 was similar during mitosis in both species. At late interphase and early prophase MPM-2 preferentially labelled nucleoli and the region around the condensing chromosomes but not the cytoplasm. General labelling of the cytoplasm followed dissolution of the nuclear envelope and by prometaphase centromeres stained strongly. At metaphase and very early anaphase kinetochores stained strongly by immunofluorescence but only weakly using immunogold; spindle microtubules (MTs) showed little staining. Kinetochore staining disappeared during anaphase and by telophase centromeres and loose regions of chromatin in reforming nuclei were labelled. Treatment with the anti-microtubular drug amiprophosmethyl (APM) showed that the phosphorylation/dephosphorylation cycle detected by MPM-2 proceeded independently of the mitotic spindle. Staining of centromeres/kinetochores with MPM-2 suggests that phosphorylation and dephosphorylation of this region of mitotic chromosomes may be involved in chromosome organization, chromatid separation and MT nucleation and/or attachment.Abbreviations APM amiprophos-methyl - DAPI 4,6-diamidino-2-phenylindole - EGTA ethylene glycol-bis(-aminoethyl ether) - FITC fluorescein isothiocyanate - MT microtubule - MTOC microtubule organizing centre - MtSB microtubule stabilizing buffer - PBS phosphate buffered saline - PBSB phosphate buffered saline with bovine serum albumin - PIPES piperazine-N,N-bis (2-ethanesulfonic acid) - PPB preprophase band - SPB spindle pole body - TRITC tetramethylrhodamine isothiocyanate  相似文献   

15.
Summary Certain aspects of cellular behaviour in relation to growth and development of plants can be understood in terms of the cell body concept proposed by Daniel Mazia in 1993. During the interphase of the mitotic cell cycle, the plant cell body is held to consist of a nucleus and a perinuclear microtubule-organizing centre from which microtubules radiate into the cytoplasm. During mitosis and cytokinesis in meristematic cells, and also during the period of growth in post-mitotic cells immediately beyond the meristem, the plant cell body undergoes various characteristic morphological transformations, many of which are proposed as being related to changing structural connections with the actin-based component of the cytoskeleton and with specialized, plasma-membrane-associated sites at the cell periphery. In post-mitotic cells, these transformations of the plant cell body coincide with, and probably provide conditions for, the various pathways of development which such cells follow. They are also responsible, for the acquisition of new cellular polarities. Events in which the plant cell body participates include the formation of a mitotic spindle, phragmoplast, and new cell division wall, the rearrangement of a diffuse type of cell wall growth into tip growth (as occurs, e.g., during the initiation and subsequent development of root hairs), and the growth and division that occurs in reactivated vacuolate cells. If more evidence can be marshalled in support of the existence and properties of the plant cell body, then this concept could prove useful in interpreting the cytological bases of a range of developmental events in plants.Abbreviations CMT cortical microtubule - EMT endoplasmic microtubule - ER endoplasmic reticulum - MF microfilament - MT microtubule - MTOC microtubule-organizing centre - PPB preprophase band (of microtubules) - QC quiescent centre - VSC vesicle supply centre  相似文献   

16.
S. Hasezawa  T. Sano  T. Nagata 《Protoplasma》1998,202(1-2):105-114
Summary During cell cycle transition from M to G1 phase, micro-tubules (MTs), organized on the perinuclear region, reached the cell cortex. Microfilaments (MFs) were not involved in this process, however, MFs accumulated to form a ring-like structure in the division plane and from there they elongated toward the distal end in the cell cortex. Subsequently, when MTs elongated along the long axis of the cells, towards the distal end, the MTs ran into and then associated with the predeveloped MFs in the cell cortex, suggesting the involvement of MFs in organizing the parallel oriented MTs in the cell cortex. When cortical MTs were formed in the direction transverse to the long axis of cells, the two structures were again closely associated. Therefore, with regards to the determination of the direction of organizing MTs, predeveloped MFs may have guided the orientation of MTs at the initial stage. Disorganization of MFs in this period, by cytochalasins, prevented the organization of cortical MTs, and resulted in the appearance of abnormal MT configurations. We thus demonstrate the involvement of MFs in determining the orientation and organization of cortical MTs, and discuss the possible role of MFs during this process.Abbreviations CB cytochalasin B - CD cytochalasin D - CLSM confocal laser scanning microscopy - DAPI 4,6-diamidino-2-phenylindole - EF-1 elongation factor 1 - MF microfilament - MT microtubule  相似文献   

17.
The role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays--termed an amphiaster ("a star on both sides")--that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB). Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC reassembled, and, prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split and separate before NEB, and these entered mitosis with persistent monastral spindles. Chromatin-associated RAN-GTP--the small GTPase Ran in its GTP bound state--could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but, in its absence, the fidelity of bipolar spindle assembly is highly compromised.  相似文献   

18.
Compelling evidence has been obtained in favour of the idea that the nuclear surface of higher plant cells is a microtubule-nucleating and/or organizing site (MTOC), in the absence of defined centrosomes. How these plant MTOC proteins are redistributed and function during the progression of the cell cycle remains entirely unknown. Using a monoclonal antibody (mAb 6C6) raised against isolated calf thymus centrosomes and showing apparent reaction with the plant nuclear surface, we followed the targeted antigen distribution during mitosis and meiosis of higher plants. Immunoblot analysis of protein fractions from Allium root meristematic cell extracts probed with mAb 6C6 reveals a polypeptide of an apparent Mr of 78000. In calf centrosome extracts, a polypeptide of comparable molecular mass is found in addition to a major antigen of Mr 180000 after mAb 6C6 immunoblotting. During mitotic initiation, the plant antigen is prominent on the periphery of the prophase nucleus. When the nuclear envelope breaks down, the antigen suddenly becomes associated with the centromere-kinetochores until late anaphase. In telophase, when the nuclear envelope is being reconstructed, it is no longer detected at the kinetochores but is solely associated again with the nuclear surface. This antigen displays a unique spatial and temporal distribution, which may reflect the pathway of plant protein(s) between the nuclear surface and the kinetochores under cell cycle control. So far, such processes have not been described in higher plant cells. These observations shed light on the putative activity of the plant kinetochore as a protein transporter. They also suggest that a plant centrosome-like antigen may have different cytoskeletal related functions depending on cell cycle regulated changes in its subcellular distribution.Abbreviations mAb monoclonal antibody - MSB microtubule stabilizing buffer - TBS Tris buffered saline - MTOC microtubule organizing centre  相似文献   

19.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   

20.
To clarify the mechanism of isopropyl-N-phenyl carbamate (IPC) action on higher plant cells the sensitivity of microtubules (cortical network and mitotic arrays) and microtubule organizing centers to IPC treatment (30 microM) in IPC-resistant and sensitive Nicotiana sylvestris lines was studied. It was clearly demonstrated that IPC does not depolymerize plant MTs but causes the MTOC damage in cells, which results in MTOC fragmentation, splitting of the spindle poles and in abnormal division spindle formation. It was also found that IPC-resistance of mutant N. sylvestris line correlates not with tubulin resistance to IPC action but possibly with resistance of one of the proteins involved in MTOC composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号