首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous two-phase systems   总被引:6,自引:0,他引:6  
Biphasic systems formed by mixing of two polymers or a polymer and a salt in water can be used for separation of cells, membranes, viruses, proteins, nucleic acids, and other biomolecules. The partitioning between the two phases is dependent on the surface properties and conformation of the materials, and also on the composition of the two-phase system. The mechanism of partitioning is, however, complex and not easily predicted. Aqueous two-phase systems (ATPS) have proven to be a useful tool for analysis of biomolecular and cellular surfaces and their interactions, fractionation of cell populations, product recovery in biotechnology, and so forth. Potential for environmental remediation has also been suggested. Because ATPS are easily scalable and are also able to hold high biomass load in comparison with other separation techniques, the application that has attracted most interest so far has been the large-scale recovery of proteins from crude feedstocks. As chemicals constitute the major cost factor for large-scale systems, use of easily recyclable phase components and the phase systems generated by a single-phase chemical in water are being studied.  相似文献   

2.
The partitioning of alpha-lactalbumin and beta-lactoglobulin from bovine whey has been studied in an aqueous poly(ethylene glycol) (PEG)-hydroxypropylstarch two-phase system. The influence of several parameters including concentrations of polymers, sodium phosphate buffer, KSCN, and of PEG palmitate, with and without the presence of Ca2+, on the partitioning of the proteins has been investigated. The separation of the two proteins was demonstrated by counter-current distribution. A purification procedure for both proteins has been developed by using PEG-hydroxypropylstarch two-phase system. This system is compared with the more costly standard system based on PEG and dextran. The possible use of the aqueous two-phase systems for batch extraction for large scale purification of these whey proteins is discussed.  相似文献   

3.
Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water–organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.  相似文献   

4.
The separation of host and recombinant Escherichia coli bacterial cells has been studied using the surface-sensitive technique of partitioning in aqueous two-phase polymer systems. Experiments were designed to probe charge-and hydrophobicity-related property differences of antibiotic-resistant recombinant cells and their antibiotic-sensitive hosts. Differential partitioning was observed in both charge-sensitive and non-charge-sensitive phase systems for three host-recombinant cell systems, but the non-charge-related effects appear to have a greater impact on partitioning behavior. This result suggests that plasmid-encoded products related to antibiotic resistance modify the surface hydrophobicity of the E. coli bacterial cell and that these differences can be exploited for cell separation.  相似文献   

5.
In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology.  相似文献   

6.
In this study we show that proteins can be partitioned and separated in a novel aqueous two-phase system composed of only one polymer in water solution. This system represents an attractive alternative to traditional two-phase systems which uses either two polymers (e.g., PEG/dextran) or one polymer in high-salt concentration (e.g., PEG/salt). The polymer in the new system is a linear random copolymer composed of ethylene oxide and propylene oxide groups which has been hydrophobically modified with myristyl groups (C(14)H(29)) at both ends (HM-EOPO). This polymer thermoseparates in water, with a cloud point at 14 degrees C. The HM-EOPO polymer forms an aqueous two-phase system with a top phase composed of almost 100% water and a bottom phase composed of 5-9% HM-EOPO in water when separated at 17-30 degrees C. The copolymer is self-associating and forms micellar-like structures with a CMC at 12 microM (0.01%). The partitioning behavior of three proteins (lysozyme, bovine serum albumin, and apolipoprotein A-1) in water/HM-EOPO two-phase systems has been studied, as well as the effect of various ions, pH, and temperature on protein partitioning. The amphiphilic protein apolipoprotein A-1 was strongly partitioned to the HM-EOPO-rich phase within a broad-temperature range. The partitioning of hydrophobic proteins can be directed with addition of salt. Below the isoelectric point (pI) BSA was partitioned to the HM-EOPO-rich phase and above the pI to the water phase when NaClO(4)was added to the system. Lysozyme was directed to the HM-EOPO phase with NaClO(4), and to the water phase with Na-phosphate. The possibility to direct protein partitioning between water and copolymer phases shows that this system can be used for protein separations. This was tested on purification of apolipoprotein A-1 from human plasma and Escherichia coli extract. Apolipoprotein A-1 could be recovered in the HM-EOPO-rich phase and the majority of contaminating proteins in the water phase. By adding a new water/buffer phase at higher pH and with 100 mM NaClO(4), and raising the temperature for separation, the apolipoprotein A-1 could be back-extracted from the HM-EOPO phase into the new water phase. This novel system has a strong potential for use in biotechnical extractions as it uses only one polymer and can be operated at moderate temperatures and salt concentrations and furthermore, the copolymer can be recovered.  相似文献   

7.
Detergent/polymer aqueous two-phase systems are studied as a fast, mild and efficient general separation method for isolation of labile integral membrane proteins. Mechanisms for phase behaviour and protein partitioning of both membrane-bound and hydrophilic proteins have been examined in a large number of detergent/polymer aqueous two-phase systems. Non-ionic detergents such as the Triton series (polyoxyethylene alkyl phenols), alkyl polyoxyethylene ethers (C(m)EO(n)), Tween series (polyoxyethylene sorbitol esters) and alkylglucosides form aqueous two-phase systems in mixtures with hydrophilic polymers, such as PEG or dextran, at low and moderate temperatures. Phase diagrams for these mixtures are shown and phase behaviour is discussed from a thermodynamic model. Membrane proteins, such as bacteriorhodopsin and cholesterol oxidase, were partitioned strongly to the micelle phase, while hydrophilic proteins, BSA and lysozyme, were partitioned to the polymer phase. The partitioning of membrane protein is mainly determined by non-specific hydrophobic interactions between detergent and membrane protein. An increased partitioning of membrane proteins to the micelle phase was found with an increased detergent concentration difference between the phases, lower polymer molecular weight and increased micelle size. Partitioning of hydrophilic proteins is mainly related to excluded volume effects, i.e. increased phase component size made the hydrophilic proteins partition more to the opposite phase. Addition of ionic detergent to the system changed the partitioning of membrane proteins slightly, but had a strong effect on hydrophilic proteins, and can be used for enhanced separation between hydrophilic proteins and membrane protein.  相似文献   

8.
A new technique to speed up the phase separation of aqueous two-phase systems is described. The technique is based on the addition of magnetically susceptible additives (ferrofluids or iron oxide particles). In a magnetic field such additives will induce a faster phase separation. In one approach, dextran-stabilized ferrofluid was added to an aqueous two-phase system containing polyethylene glycol and dextran. The ferrofluid was totally partitioned to the dextran phase. After mixing of the two-phase system, it was possible to reduce the separation time by a factor of 35 by applying a magnetic field to the system. Another approach involved the use of 1-micron iron oxide particles instead of ferrofluid. In this case also, the phase-separation time was reduced, by a factor of about 70, when the system was placed in a magnetic field. The addition of ferrofluid and/or iron oxide particles was shown to have no influence on enzyme partitioning or on enzyme activity. The partitioning of chloroplasts, on the other hand, was influenced unless the ferrofluid used had been treated with epoxysilane. A column system comprising 15 magnetic separation stages was constructed and was used for semicontinuous separation of enzyme mixtures.  相似文献   

9.
Summary We have determined phase diagrams at 22°C for the aqueous two-phase systems composed of dextran, polyethylene glycol, and water. The effects of polyethylene glycol and dextran molecular weight on phase separation are reported. These phase diagrams provide more complete data for dextran/PEG/water system, and will be needed for the correlation of biomolecule partitioning.  相似文献   

10.
The graft modification of dextran with benzoyl groups has been studied. The factors that affect the degree of substitution of benzoyl dextran were investigated. Phase diagrams for aqueous two-phase systems composed of polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran have been determined. Phase separation was also obtained in aqueous solution of two benzoyl dextran polymers with different degrees of substitution. A four-phase system was obtained with a mixture of polyethylene glycol, dextran and two kinds of benzoyl dextrans. The partitioning of methylene blue and a Procion yellow HE-3G dextran derivative were studied in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems and in systems of two benzoyl dextrans differing in degree of substitution. The proteins bovine serum albumin and glucose-6-phosphate dehydrogenase were partitioned in polyethylene glycol/benzoyl dextran aqueous two-phase systems and the effect of the degree of substitution of benzoyl dextran was studied. Chlorella pyrenoidosa, thylakoid membrane vesicles, plasma membrane vesicles and chloroplasts were partitioned in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems, and in a polyethylene glycol/dextran/benzoyl dextran four-phase system.  相似文献   

11.
Aqueous/organic two-phase systems have been evaluated for enhanced production of (R)-phenylacetylcarbinol (PAC) from pyruvate and benzaldehyde using partially purified pyruvate decarboxylase (PDC) from Candida utilis. In a solvent screen, octanol was identified as the most suitable solvent for PAC production in the two-phase system in comparison to butanol, pentanol, nonanol, hexane, heptane, octane, nonane, dodecane, methylcyclohexane, methyl tert butyl ether, and toluene. The high partitioning coefficient of the toxic substrate benzaldehyde in octanol allowed delivery of large amounts of benzaldehyde into the aqueous phase at a concentration less than 50 mM. PDC catalyzed the biotransformation of benzaldehyde and pyruvate to PAC in the aqueous phase, and continuous extraction of PAC and byproducts acetoin and acetaldehyde into the octanol phase further minimized enzyme inactivation, and inhibition due to acetaldehyde. For the rapidly stirred two-phase system with a 1:1 phase ratio and 8.5 U/mL carboligase activity, 937 mM (141 g/L) PAC was produced in the octanol phase in 49 h with an additional 127 mM (19 g/L) in the aqueous phase. Similar concentrations of PAC could be produced in the slowly stirred phase separated system at this enzyme level, although at a much slower rate. However at lower enzyme concentration very high specific PAC production (128 mg PAC/U carboligase at 0.9 U/mL) was achieved in the phase separated system, while still reaching final PAC levels of 102 g/L in octanol and 13 g/L in the aqueous phase. By comparison with previously published data by our group for a benzaldehyde emulsion system without octanol (50 g/L PAC, 6 mg PAC/U carboligase), significantly higher PAC concentrations and specific PAC production can be achieved in an octanol/aqueous two-phase system.  相似文献   

12.
The hydrophobically modified ethylene oxide polymer, HM-EO, was modified with an alkyl halide to prepare a hyamine-type HM-EO, named N-Me-HM-EO, which could be used for forming N-Me-HM-EO/buffer aqueous micellar two-phase system. The critical micelle concentration of N-Me-HM-EO solution and the phase diagrams of N-Me-HM-EO/buffer systems were determined. By using this novel aqueous micellar two-phase system, the separation of cytochrome P450 BM-3 from cell extract was explored. The partitioning behavior of P450 BM-3 in N-Me-HM-EO/buffer systems was measured. The influences of some factors such as total proteins concentration, pH, temperature and salt concentration, on the partitioning coefficients of P450 BM-3 were investigated. Since the micellar aggregates in the N-Me-HM-EO enriched phase were positively charged, it was possible to conduct the proteins with different charges to top or bottom phases by adjusting pH and salt concentration in the system. A separation scheme consisting of two consecutive aqueous two-phase extraction steps was proposed: the first extraction with N-Me-HM-EO/buffer system at pH 8.0, and the second extraction in the same system at pH 6.0. The recovery of P450 BM-3 was 73.3% with the purification factor of 2.5. The results indicated that the aqueous micellar two-phase system composed of hyamine modified polysoap has a promising application for selective separation of biomolecules depending on the enhanced electrostatic interactions between micelles and proteins.  相似文献   

13.
There is a strong interest in use of ‘smart polymers’ in separation systems. These are polymers which can react on external influence, such as temperature or pH change. With such polymers it is possible from the outside to affect the properties of a separation system. Amphiphilic copolymers show drastic changes in solubility properties, such as self-association and phase separation, at e.g. temperature increase. The random copolymers of ethylene oxide and propylene oxide units (EOPO-polymers) can form aqueous two-phase systems above the copolymer cloud point temperature. Two phases are formed, one consisting of 40–60% polymer in water and the other of almost 100% water. Amino acids and peptides can be partitioned in the thermoseparating systems. The partitioning strongly depends on the solute hydrophobicity, where aromatic amino acids and peptides are partitioned to the polymer phase and hydrophilic to the water phase. Salt effects can be used to enhance the partitioning of charged molecules. The thermodynamic driving forces which govern the partitioning of molecules in a thermoseparated aqueous phase system is described with use of the Flory-Huggins theory for polymer solutions. Expressions are derived which show the entropic and enthalpic effects on solute partitioning. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Affinity partitioning of lactate dehydrogenase (LDH) was studied in polyethylene glycol (PEG) /salt and PEG / hydroxypropyl starch (PES) aqueous two-phase systems, using free triazine dyes as their affinity ligands. The free dyes showed one-sided partition to the top PEG-rich phase and thus enhanced the affinity partitioning effect in the systems. A two-step affinity extraction process has been discussed for large scale purification of LDH from rabbit muscle.Hu Lin is one of the cooperator of the experiment.  相似文献   

16.
The partitioning of proteins between the coexisting phases of two-phase aqueous polymer systems reflects an intricate and delicate balance of interactions between proteins, polymers, salts and water. Experimental investigations have suggested that a large number of factors influence protein partitioning, including the types of polymers, their molecular weight and concentration; the protein sizes, conformation and composition; salt type and concentration, and solution pH; and the presence of ligands attached to the polymer which may interact with surface sites of the protein. Complementary modelling attempts have been successful in illuminating several molecular-level mechanisms influencing protein partitioning using lattice-model techniques, viral expansions and a scaling-thermodynamic approach. In spite of these experimental and modelling approaches, many of the physical phenomena associated with these complex systems are not well understood. Notably, the precise nature of the protein-polymer interactions and the potent effect of inorganic salts on the partitioning of proteins in these systems remains poorly understood.  相似文献   

17.
A novel tandem solvent process of dodecane and methanol was developed for the selective extraction of free astaxanthin from red encysted Haematococcus culture. The process consists of dodecane extraction for astaxanthin mixture from the culture (stage 1) and methanol extraction for free astaxanthin from the dodecane extract (stage 2). In the first stage, astaxanthin mixture was directly extracted to dodecane from the culture broth without cell harvest process, followed by a rapid separation of the dodecane extract and the culture medium containing cell debris by simple settling. In the second stage, free astaxanthin was selectively collected to methanol from the dodecane extract, accompanied with saponification of astaxanthin-esters by the addition of NaOH to methanol. During saponification, use of the optimum NaOH concentration (0.02 M) and low temperature (4 degrees C) reaction minimized the degradation of free astaxanthin, resulting in a total recovery yield of free astaxanthin of over 85%. The free-astaxanthin-containing methanol extract was also simply separated from dodecane by gravity settling, after which the astaxanthin-free dodecane was effectively recycled to the first stage, yielding a stable extractability of astaxanthin mixture during repeated extraction. Our results indicate the potential of the proposed tandem solvent process as an alternative extraction technology for the high-value antioxidant Haematococcus astaxanthin.  相似文献   

18.
Cloud point system, consisting of nonionic surfactant in an aqueous solution, has been developed as a novel medium for whole cell microbial transformation. The basic properties of cloud point system including phase separation and solubilization are introduced. The application of cloud point system for extractive microbial transformation is different from that of water-organic solvent two-phase partitioning system or aqueous two-phase system are discussed, which mainly focus on the biocompatibility of microorganism in a cloud point system and a downstream process of microbial transformation in cloud point system with oil-water-surfactant microemulsion liquid-liquid extraction for surfactant recovery and product separation. Finally, examples of whole cell microbial transformation in cloud point systems, especially in situ extraction of moderate polar substrate/product, are also presented.  相似文献   

19.
Extraction systems for hydrophobically tagged proteins have been developed based on phase separation in aqueous solutions of non-ionic detergents and polymers. The systems have earlier only been applied for separation of membrane proteins. Here, we examine the partitioning and purification of the amphiphilic fusion protein endoglucanase I(core)-hydrophobin I (EGI(core)-HFBI) from culture filtrate originating from a Trichoderma reesei fermentation. The micelle extraction system was formed by mixing the non-ionic detergent Triton X-114 or Triton X-100 with the hydroxypropyl starch polymer, Reppal PES100. The detergent/polymer aqueous two-phase systems resulted in both better separation characteristics and increased robustness compared to cloud point extraction in a Triton X-114/water system. Separation and robustness were characterized for the parameters: temperature, protein and salt additions. In the Triton X-114/Reppal PES100 detergent/polymer system EGI(core)-HFBI strongly partitioned into the micelle-rich phase with a partition coefficient (K) of 15 and was separated from hydrophilic proteins, which preferably partitioned to the polymer phase. After the primary recovery step, EGI(core)-HFBI was quantitatively back-extracted (K(EGIcore-HFBI)=150, yield=99%) into a water phase. In this second step, ethylene oxide-propylene oxide (EOPO) copolymers were added to the micelle-rich phase and temperature-induced phase separation at 55 degrees C was performed. Total recovery of EGI(core)-HFBI after the two separation steps was 90% with a volume reduction of six times. For thermolabile proteins, the back-extraction temperature could be decreased to room temperature by using a hydrophobically modified EOPO copolymer, with slightly lower yield. The addition of thermoseparating co-polymer is a novel approach to remove detergent and effectively releases the fusion protein EGI(core)-HFBI into a water phase.  相似文献   

20.
Aqueous two-phase extraction for downstream processing of amyloglucosidase   总被引:1,自引:0,他引:1  
A polymer/salt aqueous two-phase system has been successfully employed for separation and purification of amyloglucosidase. The effects of system pH, molecular weight of polymer and composition of the two-phase system on amyloglucosidase partition behaviour in polyethylene glycol (PEG 4000, 6000)/disodium hydrogen phosphate were investigated. Experimental data are explained based on Kim's theoretical model for the prediction of biomolecule partitioning in a PEG/salt system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号