首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is lethal to many species of amphibians worldwide. Many studies have investigated the epidemiology of chytridiomycosis in amphibian populations, but few have considered possible host-pathogen coevolution. More specifically, investigations focused on the evolution of Bd, and the link with Bd virulence, are needed. Such studies, which may be important for conservation management of amphibians, depend on access to Bd isolates. Here we provide a summary of known Bd isolates that have been collected and archived in various locations around the world. Of 257 Bd isolates, we found that 53% originate from ranids in the United States. In many cases, detailed information on isolate origin is unavailable, and it is unknown how many isolates are cryo-archived. We suggest the creation of a centralized database of isolate information, and we urge researchers and managers to isolate and archive Bd to facilitate future research on chytridiomycosis.  相似文献   

2.
Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.  相似文献   

3.
Although mortality in 3 groups of 15 green tree frogs Litoria caerulea exposed to 3 isolates of Batrachochytrium dendrobatidis was 100%, time to death varied with isolate, highlighting the importance of strain and/or passage history in pathogenicity studies and possibly in the epidemiology of chytridiomycosis. A standard naming scheme for isolates of B. dendrobatidis is proposed.  相似文献   

4.
Chytridiomycosis caused by Batrachochytrium dendrobatidis (Chytridiomycota) has been implicated in declines of amphibian populations on four continents. We have developed a sensitive and specific polymerase chain reaction-based assay to detect this pathogen. We isolated B. dendrobatidis from captive and wild amphibians collected across North America and sequenced the internal transcribed spacer regions of the rDNA cassette of multiple isolates. We identified two primers (Bd1a and Bd2a) that are specific to B. dendrobatidis under amplification conditions described in this study. DNA amplification with Bd1a/Bd2a primers produced a fragment of approximately 300 bp from B. dendrobatidis DNA but not from DNA of other species of chytrids or common soil fungi. The assay detected 10 zoospores or 10 pg of DNA from B. dendrobatidis and detected infections in skin samples from a tiger salamander (Ambystoma tigrinum), boreal toads (Bufo boreas), Wyoming toads (Bufo baxteri), and smooth-sided toads (Bufo guttatus). This assay required only small samples of skin and can be used to process a large number of samples.  相似文献   

5.
Batrachochytrium dendrobatidis, an aquatic fungus, has been linked to recent amphibian population declines. Few surveys have assessed B. dendrobatidis infections in areas where the disease is suggested to be less virulent and population declines have not been observed, such as southeastern North America. Although adult Rana catesbeiana and Rana sphenocephala from the Savannah River Site, South Carolina collected in 1979 and 1982 were identified as having B. dendrobatidis, it is unknown whether the fungus is currently present at the site or if susceptibility to infection varies among species or wetlands with different histories of environmental contamination. From 15 May through 15 August 2004, we collected R. catesbeiana and R. sphenocephala tadpoles from three wetlands with differing contamination histories on the Savannah River Site, South Carolina. We found B. dendrobatidis in only one of the wetlands we surveyed. Batrachochytrium dendrobatidis infection was identified in 64% of the R. catesbeiana tadpoles sampled and histologically assessed (n=50) from a wetland contaminated with mercury, copper, and zinc. No R. sphenocephala tadpoles from this site (n=50) were infected. In combination with a recently published report, our data suggest that B. dendrobatidis has been present at the Savannah River Site for over 25 yr but has not caused any apparent population declines. This time period is similar to the known presence of 30 yr of B. dendrobatidis in northeastern North America. Our data suggest that R. sphenocephala larvae might be resistant to infection, even when occupying the same wetland as the infected R. catesbeiana. Our survey did not clarify the effects of environmental contamination on infection severity, but our study stresses the importance of additional field surveys to document how this pathogen is affecting amphibians globally.  相似文献   

6.
Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for the presence of B. dendrobatidis. We found no evidence of B. dendrobatidis, suggesting that B. dendrobatidis is absent or present in such low levels that it was undetected. If B. dendrobatidis was present at the time of our sampling, this survey supports evidence of low prevalence of B. dendrobatidis in North American headwater stream salamander populations.  相似文献   

7.
8.
We have studied the effect of genetic processes in ethnically and demographically diverse isolates on the epidemiology of complex diseases. Our long-term studies of five indigenous Dagestan ethnic groups have revealed ten genetic isolates with aggregation of schizophrenia-related diseases. According to Neel’s classification (1992), these isolates belong to primary and secondary depending on the duration of demographic process. We have found that the average demographic ages of the examined primary and secondary isolates were about 4000 and 700 years, respectively. The inbreeding level F was studied using two methods: analysis of marriage structure in three generations, which is traditional in population-genetic studies, and analysis of the same structure in extensive pedigrees (up to 11–13 generations). We have shown that with the second method, the F value increases two- to threefold in various isolates. The accumulated inbreeding in the primary isolates proved to be twofold higher than that in the secondary ones. Primary isolates have revealed relatively higher genetic and clinical homogeneity in combination with higher aggregation of population-specific complex disease pathology compared to secondary isolates. A decrease in observed recombinations and the number of genomic loci linked with the disease in primary isolates have been also demonstrated. Thus, our studies showed that complex diseases can be less expensive and mapping of genes for time-consuming if conducted in primary rather than in secondary isolates, in particular when dealing with genetically heterogeneous outbred human populations.  相似文献   

9.
Chytridiomycosis is a potentially fatal disease of amphibians caused by Batrachochytrium dendrobatidis, and is implicated in declines and extinctions of amphibian populations and species around the world. To cause local host extinction, a disease organism must persist at low host densities. One mechanism that could facilitate this is the ability to persist in the environment. In the laboratory, B. dendrobatidis spreads by both frog-to-frog and environment-to-frog transmission, and can persist on a number of biotic substrates. In the field, B. dendrobatidis has been detected on environmental samples taken during an epidemic, but it is not known if it persists in the environment when endemic. Retreat sites of 2 species of Australian rain forest stream frogs Litoria lesueuri and L. nannotis were sampled 0 to 3 d after occupation during the wet and dry seasons in northern Queensland, Australia, where chytridiomycosis has been endemic for at least 10 yr. The intensity and prevalence of infection in frogs during sampling were comparatively low compared with epidemics. Diagnostic quantitative polymerase chain reaction did not detect B. dendrobatidis in any retreat site samples. It thus appears that retreat sites are not a major environmental source of infection when B. dendrobatidis occurs at low prevalence and intensity on frogs. This suggests that control efforts may not need to eliminate the organism from the environment, at least when prevalence and intensity of infection are low in frogs. Simply treating hosts may be effective at controlling the disease in the wild.  相似文献   

10.
Batrachochytrium dendrobatidis (Bd), the cause of a fatal fungal skin disease of amphibians that has led to massive die-offs, global declines and extinctions, has spread internationally as a pandemic clone with low genetic diversity. A need exists to develop highly polymorphic markers to determine centers of origin and patterns of spread to assist in the development of management strategies. Comparison of paralogous sequences, obtained from the 2 sequenced Bd genomes, indicates useful levels of inter-strain polymorphism in repetitive fragments. We assessed 6 repetitive loci for variation within and among Australian isolates using standard fragment analysis and capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) analysis. Confirmation of inter-isolate polymorphism was achieved for 2 marker systems, highlighting the potential of repetitive loci for the development of polymorphic markers in Bd. In addition, we found that repetitive loci in Bd include possible orthologs of virulence-related genes from pathogenic fungi.  相似文献   

11.
Population genetics of the amphibian pathogen Batrachochytrium dendrobatidis ( Bd ) show that isolates are highly related and globally homogenous, data that are consistent with the recent epidemic spread of a previously endemic organism. Highly related isolates are predicted to be functionally similar due to low levels of heritable genetic diversity. To test this hypothesis, we took a global panel of Bd isolates and measured (i) the genetic relatedness among isolates, (ii) proteomic profiles of isolates, (iii) the susceptibility of isolates to the antifungal drug caspofungin, (iv) the variation among isolates in growth and phenotypic characteristics, and (v) the virulence of isolates against the European common toad Bufo bufo . Our results show (i) genotypic differentiation among isolates, (ii) proteomic differentiation among isolates, (iii) no significant differences in susceptibility to caspofungin, (iv) differentiation in growth and phenotypic/morphological characters, and (v) differential virulence in B. bufo . Specifically, our data show that Bd isolates can be profiled by their genotypic and proteomic characteristics, as well as by the size of their sporangia. Bd genotypic and phenotypic distance matrices are significantly correlated, showing that less-related isolates are more biologically unique. Mass spectrometry has identified a set of candidate genes associated with inter-isolate variation. Our data show that, despite its rapid global emergence, Bd isolates are not identical and differ in several important characters that are linked to virulence. We argue that future studies need to clarify the mechanism(s) and rate at which Bd is evolving, and the impact that such variation has on the host–pathogen dynamic.  相似文献   

12.
Basidiomycetes are used in industrial processes, in basic or applied research, teaching, systematic and biodiversity studies. Efficient work with basidiomycete cultures requires their reliable source, which is ensured by their safe long-term storage. Repeated subculturing, frequently used for the preservation, is time-consuming, prone to contamination, and does not prevent genetic and physiological changes during long-term maintenance. Various storage methods have been developed in order to eliminate these disadvantages. Besides lyophilization (unsuitable for the majority of basidiomycetes), cryopreservation at low temperatures seems to be a very efficient way to attain this goal. Besides survival, another requirement for successful maintenance of fungal strains is the ability to preserve their features unchanged. An ideal method has not been created so far. Therefore it is highly desirable to develop new or improve the current preservation methods, combining advantages and eliminate disadvantages of individual techniques. Many reviews on preservation of microorganisms including basidiomycetes have been published, but the progress in the field requires an update. Although herbaria specimens of fungi (and of basidiomycetes in particular) are very important for taxonomic and especially typological studies, this review is limited to live fungal cultures.  相似文献   

13.
Batrachochytrium dendrobatidis has been investigated worldwide because of its importance in population declines in multiple species of amphibians; however, little is known regarding the disease status of all native amphibian species in China. The present study is the first survey of chytridiomycosis in free-ranging amphibian populations in China, and it examined the possible presence of B. dendrobatidis in Rana dybowskii in northeastern China (Heilongjiang Province). R. dybowskii is mainly distributed in the northeast part of China and is intensively hunted for human consumption, making populations vulnerable to extirpation in the event of additional stresses from disease epidemics. The survey was performed in early spring of 2008, using a PCR assay, histological examination of skin samples, and zoospore culture. In total, 191 frogs were examined; thus, a 95% confidence limit for prevalence of 1.57% was selected. Our results demonstrate that R. dybowskii is currently free from chytridiomycosis in Heilongjiang, even though the natural conditions of the sampling sites are suitable for the occurrence of B. dendrobatidis. Central and local governments should implement strict management measures to prevent the escape of non-native commercial amphibian species into this area, which might endanger local populations of native species.  相似文献   

14.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated as the causative agent of mass mortalities, population declines and the extinctions of amphibian species worldwide. Although several studies have shown that the prevalence of chytridiomycosis (the disease caused by the fungus) increases in cooler months, the magnitude and timing of these seasonal fluctuations have yet to be accurately quantified. We conducted disease sampling in a single population of stony creek frogs Litoria wilcoxii on 13 occasions over a 21-month period and used quantitative real-time polymerase chain reaction to detect and quantify the number of B. dendrobatidis zoospores present on samples. Disease prevalence varied significantly across sampling sessions, peaking at 58.3% (in early spring) and dropping to as low as 0% on two occasions (late summer and early autumn). There was a significant negative relationship between disease prevalence and mean air temperature in the 30 days prior to sampling. These large-scale seasonal fluctuations in chytridiomycosis levels will strongly influence conservation programs and amphibian disease research.  相似文献   

15.
MS-222 (tricaine methane sulfonate) is an agent commonly used to anaesthetise or euthanize amphibians used in experiments. It is administered by immersing the animal to allow absorption through the skin. Chytridiomycosis is an important disease of amphibians and research involves experiments with live animals. Batrachochytrium dendrobatidis, the fungus which causes chytridiomycosis, is located in the skin and therefore the organism should come into contact with MS-222 when it is used. B. dendrobatidis is a sensitive organism which could possibly be killed by MS-222. Hence, results of chytridiomycosis studies in which MS-222 is used could be unreliable. A concentration of 2 g l(-1) and an exposure duration of 1 h is at the high end of the range at which MS-222 would be most commonly used. Exposure to 2 g l(-1) MS-222 for 1 h does not kill B. dendrobatidis cultures, suggesting that MS-222 is safe to use in chytridiomycosis studies.  相似文献   

16.
Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, is considered to be a disease exclusively of amphibians. However, B. dendrobatidis may also be capable of persisting in the environment, and non-amphibian vectors or hosts may contribute to disease transmission. Reptiles living in close proximity to amphibians and sharing similar ecological traits could serve as vectors or reservoir hosts for B. dendrobatidis, harbouring the organism on their skin without succumbing to disease. We surveyed for the presence of B. dendrobatidis DNA among 211 lizards and 8 snakes at 8 sites at varying elevations in Panama where the syntopic amphibians were at pre-epizootic, epizootic or post-epizootic stages of chytridiomycosis. Detection of B. dendrobatidis DNA was done using qPCR analysis. Evidence of the amphibian pathogen was present at varying intensities in 29 of 79 examined Anolis humilis lizards (32%) and 9 of 101 A. lionotus lizards (9%), and in one individual each of the snakes Pliocercus euryzonus, Imantodes cenchoa, and Nothopsis rugosus. In general, B. dendrobatidis DNA prevalence among reptiles was positively correlated with the infection prevalence among co-occurring anuran amphibians at any particular site (r = 0.88, p = 0.004). These reptiles, therefore, may likely be vectors or reservoir hosts for B. dendrobatidis and could serve as disease transmission agents. Although there is no evidence of B. dendrobatidis disease-induced declines in reptiles, cases of coincidence of reptile and amphibian declines suggest this potentiality. Our study is the first to provide evidence of non-amphibian carriers for B. dendrobatidis in a natural Neotropical environment.  相似文献   

17.
Pathogens do not normally drive their hosts to extinction; however, Batrachochytrium dendrobatidis, which causes amphibian chytridiomycosis, has been able to do so. Theory predicts that extinction can be caused by long-lived or saprobic free-living stages. The hypothesis that such a stage occurs in B. dendrobatidis is supported by the recent discovery of an apparently encysted form of the pathogen. To investigate the effect of a free-living stage of B. dendrobatidis on host population dynamics, a mathematical model was developed to describe the introduction of chytridiomycosis into a breeding population of Bufo bufo, parametrized from laboratory infection and transmission experiments. The model predicted that the longer that B. dendrobatidis was able to persist in water, either due to an increased zoospore lifespan or saprobic reproduction, the more likely it was that it could cause local B. bufo extinction (defined as decrease below a threshold level). Establishment of endemic B. dendrobatidis infection in B. bufo, with severe host population depression, was also possible, in agreement with field observations. Although this model is able to predict clear trends, more precise predictions will only be possible when the life history of B. dendrobatidis, including free-living stages of the life cycle, is better understood.  相似文献   

18.
In previous studies, it has been reported that both S. enteritidis, the most common serotype, and S. enteritidis Phage Type 4 (SEPT 4) isolates were identified as the most prevalent PT in domestic poultry and also in humans in Korea until 2002. The aim of this study was to analyze the genetic diversity and epidemiological properties of both PT isolates, and also to trace the source of SEPT 4 isolates from domestic poultry and humans by Pulsed-field gel electrophoresis (PFGE). In order to understand the molecular epidemiologic properties of SEPT 4 isolates, which have very similar phenotypic properties to our preliminary investigations (serotyping, phage typing, large plasmids and antibiograms), PFGE analysis with XbaI enzyme was performed on the representative SEPT 4 isolates. Thirty-six SEPT 4 isolates were analyzed and differentiated with 10 pulsed-field profiles (PFP) expressing very high discriminative ability (SID: 0.921). In PFP, SEPT 4 isolates from human patients showed a perfect genetic match with those from broiler chickens and meats. Therefore, this study was able to successfully trace the major source of SEPT 4 isolates and also to determine the usefulness of the PFGE method for genetic analysis of epidemic strains.  相似文献   

19.
Chytridiomycosis is an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis, which has been implicated in amphibian declines worldwide. The mountain yellow-legged frog Rana muscosa is a declining amphibian species that can be infected by B. dendrobatidis; however, transmission between conspecifics has not been documented. Here, we present experimental evidence that R. muscosa tadpoles can be infected by fungal zoospores and that they can transmit infection to each other and to postmetamorphic animals. We compared several techniques for detecting B. dendrobatidis transmission and found that histology with serial sectioning was able to detect infection before cytology or visual inspections. We also show that R. muscosa tadpoles appear healthy with B. dendrobatidis infection, while postmetamorphic animals experience mortality. In addition, we provide guidelines for visually detecting B. dendrobatidis in R. muscosa tadpoles, which may be useful in other affected species. Field surveys of infected and uninfected populations verify this identification technique.  相似文献   

20.
Next generation sequencing technology allows rapid re-sequencing of individuals, as well as the discovery of single nucleotide polymorphisms (SNPs), for genomic diversity and evolutionary analyses. By sequencing two isolates of the fungal plant pathogen Leptosphaeria maculans, the causal agent of blackleg disease in Brassica crops, we have generated a resource of over 76 million sequence reads aligned to the reference genome. We identified over 21,000 SNPs with an overall SNP frequency of one SNP every 2,065 bp. Sequence validation of a selection of these SNPs in additional isolates collected throughout Australia indicates a high degree of polymorphism in the Australian population. In preliminary phylogenetic analysis, isolates from Western Australia clustered together and those collected from Brassica juncea stubble were identical. These SNPs provide a novel marker resource to study the genetic diversity of this pathogen. We demonstrate that re-sequencing provides a method of validating previously characterised SNPs and analysing differences in important genes, such as the disease related avirulence genes of L. maculans. Understanding the genetic characteristics of this devastating pathogen is vital in developing long-term solutions to managing blackleg disease in Brassica crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号