首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using patch clamp techniques, we found that the epithelial sodium channel (ENaC) activity in the apical membrane of A6 distal nephron cells showed a sudden rundown beginning at 4 min after forming the inside-out configuration. This sudden rundown was prevented by addition of anionic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidylserine (PS) to the "cytoplasmic" bath. Conversely, chelation of endogenous PIP(2) with anti-PIP(2) antibody, hydrolysis of PIP(2) with either exogenous phospholipase C (PLC) or activation of endogenous PLC by extracellular ATP, or application of the positively charged molecule, poly-L-lysine, accelerated channel rundown. However, neutral phosphatidylcholine had no effect on ENaC activity. By two-electrode voltage clamp recordings, we demonstrated that PIP(2) and PIP(3) significantly increased amiloride-sensitive current in Xenopus oocytes injected with cRNAs of rat alpha-, beta-, and gamma-ENaC. However, PIP(2) and PIP(3) did not affect surface expression of ENaC, indicating that PIP(2) and PIP(3) regulate ENaC at the level of the inner plasma membrane through a mechanism that is independent of ENaC trafficking. These data suggest that anionic phospholipids may mediate the regulation of ENaC by PLC- or phosphoinositide 3-kinase-coupled receptors.  相似文献   

2.
Recombinant alpha i-3 subunit of G protein activates Gk-gated K+ channels   总被引:2,自引:0,他引:2  
G proteins, particularly those sensitive to pertussis toxin, are difficult to separate biochemically, creating uncertainty in functional assignments. For this reason the cDNAs encoding G alpha i-3 and two of the G alpha s splice variants were expressed as fusion proteins in Escherichia coli using a T7 promoter-based expression system. These proteins were denoted r alpha i-3 and r alpha s (short and long) and accumulated in bacteria to as much as 5-10% of total cellular protein, of which 5-10% was soluble in lysates. Soluble r alpha subunits were tested for stimulation of K+ channel activity in inside-out atrial membrane patches and for reconstitution of cyc- adenylyl cyclase activity. r alpha i-3, activated either by guanosine 5'-(3-thio)triphosphate (GTP gamma S) or AlF-4, stimulated in a concentration-dependent manner single channel K+ currents in isolated atrial membrane patches of three species: guinea pigs, neonatal rats, and embryonic chick. In contrast, GTP gamma S-activated r alpha s did not. In agreement with a similar study by Graziano et al. (Graziano, M. P., Casey, P. J. and Gilman, A. G. (1987) J. Biol. Chem. 262, 11375-11381), both r alpha s forms reconstituted GTP gamma S-stimulated cyc- adenylyl cyclase activity, albeit at concentrations 50-100 times higher than those needed with native Gs. The concentrations of r alpha i-3 needed to stimulate the K+ channels were also higher than needed with native human erythrocyte Gk, in this case 30-50 times. Single K+ channel currents stimulated by r alpha i-3 were indistinguishable from those stimulated by the natural effector acetylcholine. Thus, bacterial expression of G alpha subunits provided the means to demonstrate unequivocally that Gi-3 has intrinsic Gk activity.  相似文献   

3.
β-Adrenergic receptors (β-AR) increase epithelial sodium channel (ENaC) activity to promote lung fluid clearance. However, the effect of selective β-AR agonist on highly selective cation (HSC) channels or nonselective cation (NSC) channels in alveolar type 1 (T1) and type 2 (T2) cells is unknown. We hypothesized that stimulation with β(1)-AR agonist (denopamine) or β(2)-AR agonist (terbutaline) would increase HSC and/or NSC channel activity in alveolar epithelial cells. We performed single-channel measurements from T1 and T2 cells accessed from rat lung slices. Terbutaline (20 μM) increased HSC ENaC activity (open probability, NP(o)) in T1 (from 0.96 ± 0.61 to 1.25 ± 0.71, n = 5, P <0.05) and T2 cells (from 0.28 ± 0.14 to 1.0 ± 0.30, n = 8, P = 0.02). Denopamine (20 μM) increased NSC NP(o) in T1 cells (from 0.34 ± 0.09 to 0.63 ± 0.14, n = 7, P = 0.02) and in T2 cells (from 0.47 ± 0.09 to 0.68 ± 0.10, P = 0.004). In vivo X-ray imaging of lung fluid clearance and ICI 118,551 selective inhibition of β(2)-ARs confirmed patch-clamp findings. cAMP concentrations increased following treatment with denopamine or terbutaline (n = 3, P < 0.002). The effects of systemic (intraperitoneal, IP) and local (intratracheal, IT) modes of delivery on lung fluid clearance were assessed. IT delivery of denopamine promoted alveolar flooding, whereas IP delivery promoted delayed fluid clearance. In summary, β-AR agonists differentially regulate HSC and NSC in T1 and T2 cells to promote lung fluid clearance in vivo, and the mode of drug delivery is critical for maximizing β-AR agonist efficacy.  相似文献   

4.
Hydrolysis of fluorescent GTP analogues BODIPY FL guanosine 5 '-O-(thiotriphosphate) (BGTPgammaS) and BODIPY FL GTP (BGTP) by Galpha(i1) and Galpha was characterized using on-line capillary electrophoresis (o) laser-induced fluorescence assays in order that changes in sub-strate, substrate-enzyme complex, and product could be monitored separately. Apparent k values (V /[E]) (max cat) steady-state and K(m) values were determined from assays for each substrate-protein pair. When BGTP was the substrate, maximum turnover numbers for Galpha and Galpha(i1) were 8.3 +/- 1 x 10(-3) and 3.0 +/- 0.2 x 10(-2) s(-1), respectively, and K(m) values were 120 +/- 60 and 940 +/- 160 nm. Assays with BGTPgammaS yielded maximum turnover numbers of 1.6 +/- 0.1 x 10(-4) and 5.5 +/- 0.3 x 10(-4) s(-1) for Galpha and Galpha(i1); K(m) values were 14 (o)(+/-)8 and 87 +/- 22 nm. Acceleration of Galpha GTPase activity by regulators of G protein signaling (RGS) was demonstrated in both steady-state and pseudo-single-turnover assay formats with BGTP. Nanomolar RGS increased the rate of enzyme product formation (BODIPY(R) FL GDP (BGDP)) by 117-213% under steady-state conditions and accelerated the rate of G protein-BGTP complex decay by 199 -778% in pseudo-single-turnover assays. Stimulation of GTPase activity by RGS proteins was inhibited 38-81% by 40 mum YJ34, a previously reported peptide RGS inhibitor. Taken together, these results illustrate that Galpha subunits utilize BGTP as a substrate similarly to GTP, making BGTP a useful fluorescent indicator of G protein activity. The unexpected levels of BGTPgammaS hydrolysis detected suggest that caution should be used when interpreting data from fluorescence assays with this probe.  相似文献   

5.
Agonist-stimulated high affinity GTPase activity of fusion proteins between the alpha(2A)-adrenoreceptor and the alpha subunits of forms of the G proteins G(i1), G(i2), G(i3), and G(o1), modified to render them insensitive to the action of pertussis toxin, was measured following transient expression in COS-7 cells. Addition of a recombinant regulator of G protein signaling protein, RGS4, did not significantly affect basal GTPase activity nor agonist stimulation of the fusion proteins containing Galpha(i1) and Galpha(i3) but markedly enhanced agonist-stimulation of the proteins containing Galpha(i2) and Galpha(o1.) The effect of RGS4 on the alpha(2A)-adrenoreceptor-Galpha(o1) fusion protein was concentration-dependent with EC(50) of 30 +/- 3 nm and the potency of the receptor agonist UK14304 was reduced 3-fold by 100 nm RGS4. Equivalent reconstitution with Asn(88)-Ser RGS4 failed to enhance agonist function on the alpha(2A)-adrenoreceptor-Galpha(o1) or alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins. Enzyme kinetic analysis of the GTPase activity of the alpha(2A)-adrenoreceptor-Galpha(o1) and alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins demonstrated that RGS4 both substantially increased GTPase V(max) and significantly increased K(m) of the fusion proteins for GTP. The increase in K(m) for GTP was dependent upon RGS4 amount and is consistent with previously proposed mechanisms of RGS function. Agonist-stimulated GTPase turnover number in the presence of 100 nm RGS4 was substantially higher for alpha(2A)-adrenoreceptor-Galpha(o1) than for alpha(2A)-adrenoreceptor-Galpha(i2). These studies demonstrate that although RGS4 has been described as a generic stimulator of the GTPase activity of G(i)-family G proteins, selectivity of this interaction and quantitative variation in its function can be monitored in the presence of receptor activation of the G proteins.  相似文献   

6.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits speeding deactivation. Galpha deactivation kinetics mediated by RGS are too fast to be directly studied using conventional radiochemical methods. We describe a stopped-flow spectroscopic approach to visualize these rapid kinetics by measuring the intrinsic tryptophan fluorescence decrease of Galpha accompanying GTP hydrolysis and Galpha deactivation on the millisecond time scale. Basal k(cat) values for Galpha(o), Galpha(i1), and Galpha(i2) at 20 degrees C were similar (0.025-0.033 s(-1)). Glutathione S-transferase fusion proteins containing RGS4 and an RGS7 box domain (amino acids 305-453) enhanced the rate of Galpha deactivation in a manner linear with RGS concentration. RGS4-stimulated rates could be measured up to 5 s(-1) at 3 microm, giving a catalytic efficiency of 1.7-2.8 x 10(6) m(-1) s(-1) for all three Galpha subunits. In contrast, RGS7 showed catalytic efficiencies of 0.44, 0.10, and 0.02 x 10(6) m(-1) s(-1) toward Galpha(o), Galpha(i2), and Galpha(i1), respectively. Thus RGS7 is a weaker GTPase activating protein than RGS4 toward all Galpha subunits tested, but it is specific for Galpha(o) over Galpha(i1) or Galpha(i2). Furthermore, the specificity of RGS7 for Galpha(o) does not depend on N- or C-terminal extensions or a Gbeta(5) subunit but resides in the RGS domain itself.  相似文献   

7.
Polarized renal epithelial cells have pertussis toxin-sensitive Gi proteins at their apical membrane capable of modulating Na+ channel activity (Cantiello, H.F., Patenaude, C.R., and Ausiello, D.A. (1989) J. Biol. Chem. 264, 20867-20870). In this study, the patch clamp technique was used to assess if this Gi-mediated regulation of Na+ channels is a component of a phospholipid signal transduction pathway. In excised inside-out patches of apical membranes of A6 cells, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated Na+ channel activity (percent open time and channel number) was inhibited by the phospholipase inhibitor mepacrine (50 microM), which had no effect on single channel conductance. In contrast, Na+ channel activity increased in a Ca2(+)-dependent manner following the addition of 100 nM mellitin to untreated or pertussis toxin-treated patches. Addition of 10 microM arachidonic acid in the presence of mepacrine increased Na+ channel activity. Both percent open time and Na+ channel number induced by GTP gamma S, the exogenous alpha i-3 subunit, or arachidonic acid were inhibited by the addition of the 5-lipoxygenase inhibitor nordihydroguaiaretic acid. Na+ channel activity was restored with the addition of leukotriene D4 (100 nM) or the parental leukotriene substrate 5-hydroperoxyeicosatetraenoic acid (10 microM). Thus, Gi activation of apical membrane epithelial Na+ channels is mediated through the regulation of phospholipase and lipoxygenase activities. This apically located signal transduction pathway may be sensitive to, or independent of, classical second messengers generated at the basolateral membrane and known to be responsible for modulation of Na+ channel activity in epithelia.  相似文献   

8.
9.
The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.  相似文献   

10.
Estrogen (17beta-estradiol; 17betaE) and xenoestrogens, estrogenic compounds that are not steroid hormones, have non-genomic actions at plasma membrane receptors unrelated to the nuclear estrogen receptor. The open probability (P(o)) of large conductance Ca(2+)/voltage-sensitive k(+)(BK) channels is increased by 17betaE through the regulatory beta1 subunit. The pharmacological nature of the putative membrane binding site is unclear. We probed the site by determining whether tamoxifen ((Z)-1-(p-dimethylaminoethoxy-phenyl)-1,2-diphenyl-1-butene; Tx), a chemotherapeutic xenoestrogen, increased P(o) in clinically relevant concentrations (0.1-10 microm). In whole cell patch clamp recordings on canine colonic myocytes, which express the beta1 subunit, Tx activated charybdotoxin-sensitive K(+) current. In single channel experiments, Tx increased the NP(o) (P(o) x number channels; N) and decreased the unitary conductance (gamma) of BK channels. Tx increased NP(o) (EC(50) = 0.65 microm) in excised membrane patches independent of Ca(2+) changes. The Tx mechanism of action requires the beta1 subunit, as Tx increased the NP(o) of Slo alpha expressed in human embryonic kidney cells only in the presence of the beta1 subunit. Tx decreased gamma of the alpha subunit expressed alone, without effect on NP(o). Our data indicate that Tx increases BK channel activity in therapeutic concentrations and reveal novel pharmacological properties attributable to the alpha and beta1 subunits. These data shed light on BK channel structure and function, non-genomic mechanisms of regulation, and physiologically and therapeutically relevant effects of xenoestrogens.  相似文献   

11.
Whole cell voltage clamp experiments were performed in a mouse cortical collecting duct principal cell line using patch pipettes back-filled with a solution containing phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). PIP(3) significantly increased amiloridesensitive current in control cells but not in the cells prestimulated by aldosterone. Additionally, aldosterone stimulated amiloridesensitive current in control cells, but not in the cells that expressed a PIP(3)-binding protein (Grp1-PH), which sequestered intracellular PIP(3). 12 amino acids from the N-terminal tail (APGEKIKAKIKK) of gamma-epithelial sodium channel (gamma-ENaC) were truncated by PCRbased mutagenesis (gammaT-ENaC). Whole cell and confocal microscopy experiments were conducted in Madin-Darby canine kidney cells co-expressing alpha- and beta-ENaC only or with either gamma-ENaC or gamma(T)-ENaC. The data demonstrated that the N-terminal tail truncation significantly decreased amiloride-sensitive current and that both the N-terminal tail truncation and LY-294002 (a PI3K inhibitor) prevented ENaC translocation to the plasmamembrane. These data suggest that PIP(3) mediates aldosterone-induced ENaC activity and trafficking and that the N-terminal tail of gamma-ENaC is necessary for channel trafficking, probably channel gating as well. Additionally, we demonstrated a novel interaction between gamma-ENaC and PIP(3).  相似文献   

12.
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.  相似文献   

13.
We used single channel methods on A6 renal cells to study the regulation by methylation reactions of epithelial sodium channels. 3-Deazaadenosine (3-DZA), a methyltransferase blocker, produced a 5-fold decrease in sodium transport and a 6-fold decrease in apical sodium channel activity by decreasing channel open probability (P(o)). 3-Deazaadenosine also blocked the increase in channel open probability associated with addition of aldosterone. Sodium channel activity in excised "inside-out" patches usually decreased within 1-2 min; in the presence of S-adenosyl-l-methionine (AdoMet), activity persisted for 5-8 min. Sodium channel mean time open (t(open)) before and after patch excision was higher in the presence of AdoMet than in untreated excised patches but less than t(open) in cell-attached patches. Sodium channel activity in excised patches exposed to both AdoMet and GTP usually remained stable for more than 10 min, and P(o) and the number of active channels per patch were close to values in cell-attached patches from untreated cells. These findings suggest that a methylation reaction contributes to the activity of epithelial sodium channels in A6 cells and is directed to some regulatory element closely connected with the channel, whose activity also depends on the presence of intracellular GTP.  相似文献   

14.
The epithelial sodium channel (ENaC) is expressed in a variety of tissues, including the renal collecting duct, where it constitutes the rate-limiting step for sodium reabsorption. Liddle's syndrome is caused by gain-of-function mutations in the beta and gamma subunits of ENaC, resulting in enhanced Na reabsorption and hypertension. Epidermal growth factor (EGF) causes acute inhibition of Na absorption in collecting duct principal cells via an extracellular signal-regulated kinase (ERK)-dependent mechanism. In experiments with primary cultures of collecting duct cells derived from a mouse model of Liddle's disease (beta-ENaC truncation), it was found that EGF inhibited short-circuit current (Isc) by 24 +/- 5% in wild-type cells but only by 6 +/- 3% in homozygous mutant cells. In order to elucidate the role of specific regions of the beta-ENaC C terminus, Madin-Darby canine kidney (MDCK) cell lines that express beta-ENaC with mutation of the PY motif (P616L), the ERK phosphorylation site (T613A), and C terminus truncation (R564stop) were created using the Phoenix retroviral system. All three mutants exhibited significant attenuation of the EGF-induced inhibition of sodium current. In MDCK cells with wild-type beta-ENaC, EGF-induced inhibition of Isc (<30 min) was fully reversed by exposure to an ERK kinase inhibitor and occurred with no change in ENaC surface expression, indicative of an effect on channel open probability (P(o)). At later times (>30 min), EGF-induced inhibition of Isc was not reversed by an ERK kinase inhibitor and was accompanied by a decrease in ENaC surface expression. Our results are consistent with an ERK-mediated decrease in ENaC open probability and enhanced retrieval of sodium channels from the apical membrane.  相似文献   

15.
The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a limiting step in sodium reabsorption across distal airway epithelium and controlling mucociliary clearance. ENaC is activated by serine proteases secreted in the extracellular milieu. In cystic fibrosis lungs, high concentrations of secreted neutrophil elastase (NE) are observed. hNE could activate ENaC and contribute to further decreased mucociliary clearance. The aims of this study were (i) to test the ability of an engineered human neutrophil elastase inhibitor (EPI-hNE4) to specifically inhibit the elastase activation of ENaC-mediated amiloride-sensitive currents (I(Na)) and (ii) to examine the effect of elastase on cell surface expression of ENaC and its cleavage pattern (exogenous proteolysis). Oocytes were exposed to hNE (10-100 microg/ml) and/or trypsin (10 microg/ml) for 2-5 min in the presence or absence of EPI-hNE4 (0.7 microm). hNE activated I(Na) 3.6-fold (p < 0.001) relative to non-treated hENaC-injected oocytes. EPI-hNE4 fully inhibited hNE-activated I(Na) but had no effect on trypsin- or prostasin-activated I(Na). The co-activation of I(Na) by hNE and trypsin was not additive. Biotinylation experiments revealed that cell surface gamma ENaC (but not alpha or beta ENaC) exposed to hNE for 2 min was cleaved (as a 67-kDa fragment) and correlated with increased I(Na). The elastase-induced exogenous proteolysis pattern is distinct from the endogenous proteolysis pattern induced upon preferential assembly, suggesting a causal relationship between gamma ENaC cleavage and ENaC activation, taking place at the plasma membrane.  相似文献   

16.
A soluble inositolphospholipid-specific phospholipase C (PI-phospholipase C) has been purified 5,800-fold from the cytosolic fraction of calf thymocytes. The purification was achieved by sequential column chromatographies on DEAE-Sepharose CL-6B, heparin-Sepharose CL-6B, Sephacryl S-300, Mono S, and Superose 12, followed by column chromatography on Sephadex G-100 in the presence of 1% sodium cholate. The enzyme thus purified was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was estimated to be 68 kDa by SDS-PAGE. The enzyme is specific for inositol phospholipids. Phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate (PIP2) were hydrolyzed, but phosphatidylcholine and phosphatidylethanolamine were not affected by the enzyme. GTP gamma S-binding activity was detected in the enzyme fractions after all the purification steps, but not in the final enzyme preparation. The PI-phospholipase C and GTP gamma S-binding activities in the partially purified enzyme preparation could be separated by the column chromatography on Sephadex G-100 only in the presence of 1% sodium cholate. Thus, the soluble PI-phospholipase C has affinity to a GTP-binding protein. SDS-PAGE of the GTP-binding fractions eluted from the Sephadex G-100 column gave three visible bands of 54, 41, and 27 kDa polypeptide was specifically ADP-ribosylated by pertussis toxin. Furthermore, it was found that GTP and GTP gamma S (10 microM and 1 mM) could enhance the PIP2 hydrolysis activity of the partially purified enzyme in the presence of 3 mM EGTA, but the purified enzyme after separation from the GTP-binding activity was not affected by GTP and GTP gamma S. The soluble PI-phospholipase C of calf thymocytes may be not only physically but also functionally associated with a GTP-binding protein.  相似文献   

17.
The hypothesis that 30-amino acid peptides corresponding to the C-terminal portion of the beta- and/or gamma-rat epithelial sodium channel (rENaC) subunits block constitutively activated ENaC was tested by examining the effects of these peptides on wild-type (wt) rENaC (alphabetagamma-rENaC), truncated Liddle's mutants (alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC), and point mutants (alphabeta(Y)gamma-, alphabetagamma(Y)-rENaC) expressed in Xenopus oocytes. The chord conductances of alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC were 2- or 3-fold greater than for wt alphabetagamma-rENaC. Introduction of peptides into oocytes expressing alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC produced a concentration-dependent inhibition of the amiloride-sensitive Na(+) conductances, with apparent dissociation constants (K(d)) ranging from 1700 to 160 microM, depending upon whether individual peptides or their combination was used. Injection of peptides alone or in combination into oocytes expressing wt alphabetagamma-rENaC or single-point mutants did not affect the amiloride-sensitive whole-cell currents. The single channel conductances of all the mutant ENaCs were the same as that of wild type (alphabetagamma-). The single channel activities (N.P(o)) of the mutants were approximately 2.2-2.6-fold greater than wt alphabetagamma-rENaC (1.08 +/- 0.24, n = 7) and were reduced to 1.09 +/- 0.17 by 100 microM peptide mixture (n = 9). The peptides were without effect on the single channel properties of either wt or single-point mutants of rENaC. Our data demonstrate that the C-terminal peptides blocked the Liddle's truncation mutant (alphabeta(T)gamma(T)) expressed in Xenopus oocytes but not the single-point mutants (alphabeta(Y)gamma or alphabetagamma(Y)). Moreover, the blocking effect of both peptides in combination on alphabeta(T)gamma(T)-rENaC was synergistic.  相似文献   

18.
In this study, the influence of the inhibitory mu-opioid receptor on the potencies of 5'-guanosine alpha-thiotriphosphate (GTP gamma S) and GDP at the inhibitory GTP-binding protein (Gi) were investigated in an adenylyl cyclase system. It was hoped that a receptor-mediated change in the potency of either GTP gamma S or GDP in affecting adenylyl cyclase activity may elucidate how a receptor alters cyclase activity via its G-protein. In an adenylyl cyclase system employing 5'-adenylyl imidodiphosphate as substrate, GTP gamma S, a nonhydrolyzable analog of GTP, inhibited forskolin-stimulated adenylyl cyclase activity in the absence of morphine; morphine failed to significantly affect the apparent potency of GTP gamma S. GDP blocked the GTP gamma S-induced inhibition of adenylyl cyclase; morphine profoundly diminished the ability of GDP to block the inhibitory effect of GTP gamma S. The IC50 values of GTP gamma S were 0.02 +/- 0.01, 0.18 +/- 0.04, and 2.2 +/- 0.5 microM in the absence of other drugs, in the presence of a combination of 100 microM GDP and morphine, and in the presence of 100 microM GDP, respectively. GDP blocked the inhibitory effect of GTP gamma S (0.3 microM) in a concentration-dependent manner; the EC50 for GDP was 16 +/- 2.6 microM in the absence of morphine and 170 +/- 32 microM in the presence of morphine. Exposure of 7315c cells to pertussis toxin for 3 h resulted in a small decrease in the potency of GTP gamma S in inhibiting cyclase. However, the relative potency of GDP in blocking the GTP gamma S-mediated inhibition of cyclase was increased: the EC50 values of GDP were 11 +/- 4 and 0.81 +/- 0.2 microM in untreated and pertussis toxin-treated membranes, respectively. In untreated membranes, there was a brief lag in the GTP gamma S-induced inhibition of adenylyl cyclase; morphine diminished this lag. In membranes treated with pertussis toxin, there was an exaggerated lag in the onset of GTP gamma S inhibition of adenylyl cyclase activity; morphine could no longer affect this lag. Thus, uncoupling the mu-opioid receptor from Gi appeared to increase the affinity of Gi for GDP. These data suggest that the effect of an inhibitory receptor is to decrease the affinity of Gi for GDP by virtue of its interaction with the carboxy-terminal region of Gi alpha.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Sensitization of adenylyl cyclase (AC) by increased expression of large isoforms of the stimulatory G-protein Galpha(s) has been suggested as a mechanism that governs uterine quiescence during pregnancy. We quantified several components of the AC pathway in pregnant (P, n=21) and nonpregnant human myometria (NP, n=10). AC activity was approximately sevenfold higher in P than in NP under basal and stimulated conditions (MnCl(2)/GTP/GTP + isoproterenol). In addition, relative stimulation (% of basal) by 5'-guanosine-betagamma-iminotriphosphate and forskolin was twofold higher in P. beta-Adrenoceptor density was low and unaltered in P. Galpha(s) mRNA splice variants did not differ in P. Using antisera against different epitopes of Galpha(s) (carboxyl-/more amino-terminal), we found unchanged expression of Galpha(s) short and long (45, 47 kDa) in P. Two additional proteins in P (51, 59 kDa) were detectable only by the carboxyl-terminal antiserum and lacked GTP binding properties. The 59 kDa protein could be identified as a recently discovered cytoskeletal protein, smoothelin, which was 10-fold increased in P. These data indicate that the apparent up-regulation of large Galpha(s) species in P is mimicked by elevated smoothelin. Therefore, the increase in AC cannot be attributed to changes in Galpha(s)- or beta-adrenoreceptors. Epitope sharing between Galpha(s) and smoothelin should be considered in experiments on smooth muscle tissues.  相似文献   

20.
Sensitivity of oocyte-expressed epithelial Na+ channel to glibenclamide   总被引:1,自引:0,他引:1  
The effect of glibenclamide on heterologously expressed amiloride-sensitive sodium channels (ENaCs) was investigated in Xenopus oocytes. The ENaC is a heteromer and consists of alpha-, beta- and gamma-subunits and the alpha- and beta-subunits have previously been shown to confer sensitivity to glibenclamide. We coexpressed either colonic rat alpha- (ralpha) or guinea-pig alpha-subunit (gpalpha) with Xenopus betagamma-subunits. The gpalphaxbetagamma was significantly stimulated by glibenclamide (100 microM) (184+/-15%), whereas the ralpha-combination was slightly down-regulated by the sulfonylurea (79+/-4%). The stimulating effect did not interfere with Na(+)-self-inhibition resulting from intracellular accumulation of Na(+)-ions. We exchanged cytosolic termini between both orthologs but the gpalpha-chimera with the termini from rat retained sensitivity to glibenclamide. The effect of glibenclamide on Xenopus ENaC (xENaC) was inhibited by ADP-beta-S but not by ATP-gamma-S, when applied intracellularly. Intracellular loading with Na(+)-ions after inhibition of Na(+)/K(+)-ATPases with ouabain prevented an up-regulation of ENaC activity by glibenclamide. Pretreatment of oocytes expressing xENaC with edelfosine (ET-18-OCH(3)) slightly reduced stimulation of I(ami) (118+/-12%; control: 132+/-9%) while phosphatidylinositol-4,5-biphosphate (PIP(2)) significantly reduced the effect of glibenclamide to 101+/-3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号