首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fertilization is the result of a series of successful recognition and binding events mediated by gamete surface molecules. Recent advances in the identification and characterization of some of these recognition molecules provide extremely valuable information necessary to understand sperm-egg recognition and subsequent egg activation. We discuss these new data in the context of the model of gamete recognition first proposed by F.R. Lillie in the early part of the 20th century, and revisited periodically in the subsequent literature, which relates fortilization events to those of immune cell recognition and activation events. Here we discuss the principles underlying the molecular recognition and activation mechanisms of gametes and immune cells.  相似文献   

2.
A Chiba 《Neuron》2001,32(3):381-384
The establishment of the proper connectivity in the nervous system requires specific target selection between individual presynaptic and postsynaptic cells. It has been postulated that cell adhesion molecules likely participate in these local recognition events. However, the broad developmental roles of many of these molecules have presented an obstacle for loss-of-function analyses. A recent series of genetic studies in the Drosophila visual system has demonstrated roles for several cell adhesion molecules, including N-cadherin and the receptor protein tyrosine phosphatase LAR in proper synaptic targeting of photoreceptor axons.  相似文献   

3.
MHC class II molecules on the surface of antigen-presenting cells display a range of peptides for recognition by the T-cell receptors of CD4+ T helper cells. Therefore, MHC class II molecules are central to effective adaptive immune responses, but conversely, genetic and epidemiological data have implicated these molecules in the pathogenesis of autoimmune diseases. Indeed, the strength of the associations between particular MHC class II alleles and disease render them the main genetic risk factors for autoimmune disorders such as type 1 diabetes. Here, we discuss the insights that the crystal structures of MHC class II molecules provide into the molecular mechanisms by which sequence polymorphisms might contribute to disease susceptibility.  相似文献   

4.
Antigen presentation   总被引:7,自引:0,他引:7  
This paper reviews some of the cellular events involved in the immune recognition of foreign proteins. The recognition of an antigen by T lymphocytes is essential for its effective elimination by the host. T lymphocytes of the CD4 or CD8 subset recognize antigen but only after the antigen is handled by antigen-handling cells (antigen-presenting cells). Antigen molecules are recognized after an internal processing event by antigen-presenting cells that results in the generation of immunogenic peptides. Such peptides associate with histocompatibility molecules to form bimolecular complexes on the cell surface. The T cell receptors for antigen recognize the bimolecular complex and initiate the events that result in an inflammatory response. Antigen-presenting cells also produce molecules - termed costimulators - that stimulate the growth and differentiation of T lymphocytes.  相似文献   

5.
The specific adhesion of cells to other cells or to particular tissue microenvirorvments is a basic function of cell migration and recognition, and underlines many biologic processes including embryogenesis, repair and immunity. Leukocytes express an array of surface receptors broadly known as “accessory adhesion molecules.” which mediate most cell -cell interactions, direct lymphocyte traffic between anatomical compartments, and facilitate cellular adhesion to the inflammation or alloantigenic sites (Springer 1990). In addition, adhesion molecules are involved in the process of antigen recognition, and may costimulate cell activation and transformation. These proteins are thought to affect the very early antigen independent events between host leukocytes and vascular endothelium. Because of these activities, the subject of adhesion molecules is gaining interest in the field of organ transplantation, in both conceptualization and development of novel therapeutic strategies (de Sousa et al. 1991, Kupiec-Weglinski et al. 1993a, Heemann et al. 1993).  相似文献   

6.
The specific adhesion of cells to other cells or to particular tissue microenvirorvments is a basic function of cell migration and recognition, and underlines many biologic processes including embryogenesis, repair and immunity. Leukocytes express an array of surface receptors broadly known as “accessory adhesion molecules.” which mediate most cell -cell interactions, direct lymphocyte traffic between anatomical compartments, and facilitate cellular adhesion to the inflammation or alloantigenic sites (Springer 1990). In addition, adhesion molecules are involved in the process of antigen recognition, and may costimulate cell activation and transformation. These proteins are thought to affect the very early antigen independent events between host leukocytes and vascular endothelium. Because of these activities, the subject of adhesion molecules is gaining interest in the field of organ transplantation, in both conceptualization and development of novel therapeutic strategies (de Sousa et al. 1991, Kupiec-Weglinski et al. 1993a, Heemann et al. 1993).  相似文献   

7.
The thymus and central tolerance   总被引:3,自引:0,他引:3  
T-cell differentiation in the thymus generates a peripheral repertoire of mature T cells that mounts strong responses to foreign antigens but is largely unresponsive to self-antigens. This state of specific immunological tolerance to self-components involves both central and peripheral mechanisms. Here we review the process whereby many T cells with potential reactivity for self-antigens are eliminated in the thymus during early T-cell differentiation. This process of central tolerance (negative selection) reflects apoptosis and is a consequence of immature T cells receiving strong intracellular signalling through T-cell receptor (TCR) recognition of peptides bound to major histocompatibility complex (MHC) molecules. Central tolerance occurs mainly in the medullary region of the thymus and depends upon contact with peptide-MHC complexes expressed on bone-marrow-derived antigen-presenting cells (APCs); whether tolerance also occurs in the cortex is still controversial. Tolerance induction requires a combination of TCR ligation and co-stimulatory signals. Co-stimulation reflects interaction between complementary molecules on T cells and APCs and probably involves multiple molecules acting in consort, which may account for why deletion of individual molecules with known or potential co-stimulatory function has little or no effect on central tolerance. The range of self-antigens that induce central tolerance is considerable and, via low-level expression in the thymus, may also include tissue-specific antigens; central tolerance to these latter antigens, however, is likely to be limited to high-affinity T cells, leaving low-affinity cells to escape. Tolerance to alloantigens and the possibility of using central tolerance to promote acceptance of allografts are discussed.  相似文献   

8.
The accessibility of the zebrafish embryo offers unique possibilities to study the mechanisms that guide growing axons in the developing vertebrate central nervous system. This review examines the current understanding of the pathfinding decisions by the growing axons, their substrates, and the recognition molecules that mediate axon-substrate interactions. The detailed analysis of pathfinding at the level of individual axons demonstrates that growing axons chose their paths unerringly. To do so, they rely on cues presented by their environment, in particular by neuroepithelial cells. Our understanding of the molecular bases of axon-substrate interactions is increasing. Members of most classes of recognition molecules have been identified in fish. Experimental evidence for the functions of these molecules in the zebrafish nervous system is accumulating. In the future, this analysis is expected to profit greatly from genetic screens that have recently been initiated.  相似文献   

9.
The identification and characterization of genetic loci that contribute to patterns of susceptibility/resistance to infection provide important insights into the mechanisms of innate and adaptive immunity. Genetic heterogeneity across the population makes the characterization of such traits in humans technically difficult; however, inbred animal models represent an ideal tool for such analyses. This review illustrates the power of mouse genetics as utilized for the identification and characterization of the locus conferring early resistance to murine cytomegalovirus infection, Cmv1. This locus encodes an activating C-type lectin receptor of the Ly49 family that promotes natural killer (NK) cell cytolysis of infected cells. Although NK cells are usually able to detect and destroy virally infected cells via recognition of the downregulation of MHC class I molecules, the Cmv1 locus provides the first example of an NK receptor that is able to mediate clearance of viral infection via direct recognition of a virally encoded protein.  相似文献   

10.
MHC-linked class-Ib molecules are a subfamily of class-I molecules that display limited genetic polymorphism. At one time these molecules were considered to have an enigmatic function. However, recent studies have shown that MHC-linked class-Ib molecules can function as antigen presentation structures that bind bacteria-derived epitopes for recognition by CD8+ effector T cells. This role for class-Ib molecules has been demonstrated across broad classes of intracellular bacteria including Listeria moncytogenes, Salmonella typhimurium, and Mycobacterium tuberculosis. Additionally, evidence is emerging that MHC-linked class-Ib molecules also serve an integral role as recognition elements for NK cells as well as several TCR alpha/beta and TCR gamma/delta T-cell subsets. Thus, MHC-linked class-Ib molecules contribute to the host immune response by serving as antigen presentation molecules and recognition ligands in both the innate and adaptive immune response to infection. In this review, we will attempt to summarize the work that supports a role for MHC-linked class-Ib molecules in the host response to infection with intracellular bacteria.  相似文献   

11.
The ectomycorrhizal symbiosis: genetics and development   总被引:1,自引:1,他引:0  
Tagu  Denis  Lapeyrie  Frédéric  Martin  Francis 《Plant and Soil》2002,244(1-2):97-105
Ectomycorrhiza represents a symbiotic structure made between tree roots and filamentous hyphae. This new organ results from a favourable interaction between plant and microbes, taking place in the soil at the vicinity of the root. Diversity is extremely important in the rhizosphere, with large numbers of bacterial, fungal, nematode and invertebrate species. Therefore, partners of the mycorrhiza have to recognize each other and they do it by using diffusible rhizospheric molecules. This recognition leads to cellular interactions between root and fungal cells, driven by changes in gene and protein expression. The aim of this review is to describe the cellular, genetic and molecular events leading to the formation of the ectomycorrhizal tissues with an emphasis on gene expression and cell-to-cell communication.  相似文献   

12.
The structure of unintegrated human immunodeficiency virus type 1 (HIV-1) DNA from acutely infected human lymphoid cells was analyzed by nuclease S1 cleavage. We observed a unique, discrete single-stranded gap in unintegrated linear DNA molecules, located near the center of the genome. Oligonucleotide primer extension experiments determined that the downstream limit of this gap coincides with the last nucleotide of a central copy of the polypurine tract found in all sequenced lentivirus genomes. Other retroviruses have only one copy of the polypurine tract at the 5' boundary of the 3' long terminal repeat, which has been shown to determine initiation of retroviral DNA plus-strand synthesis. We conclude from our observations that the central repeat of the polypurine tract can create an additional site for plus-strand synthesis initiation in lentiviruses. The central single-stranded gap was not found in circular DNA molecules, the vast majority of them carrying only one long terminal repeat. This finding suggests that the generation of such circular molecules is associated with early DNA ligation events.  相似文献   

13.
Apoptotic recognition is innate and linked to a profound immune regulation (innate apoptotic immunity [IAI]) involving anti-inflammatory and immunosuppressive responses. Many of the molecular and mechanistic details of this response remain elusive. Although immune outcomes can be quantified readily, the initial specific recognition events have been difficult to assess. We developed a sensitive, real-time method to detect the recognition of apoptotic cells by viable adherent responder cells, using a photonic crystal biosensor approach. The method relies on characteristic spectral shifts resulting from the specific recognition and dose-dependent interaction of adherent responder cells with nonadherent apoptotic targets. Of note, the biosensor provides a readout of early recognition-specific events in responder cells that occur distal to the biosensor surface. We find that innate apoptotic cell recognition occurs in a strikingly species-independent manner, consistent with our previous work and inferences drawn from indirect assays. Our studies indicate obligate cytoskeletal involvement, although apoptotic cell phagocytosis is not involved. Because it is a direct, objective, and quantitative readout of recognition exclusively, this biosensor approach affords a methodology with which to dissect the early recognition events associated with IAI and immunosuppression.  相似文献   

14.
Nod1 is an intracellular protein that is involved in recognition of bacterial molecules and whose genetic variation has been linked to several inflammatory diseases. Previous studies suggested that the recognition core of Nod1 stimulatory molecules is gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP), but the identity of the major Nod1 stimulatory molecule produced by bacteria remains unknown. Here we show that bacteria produce lipophilic molecules capable of stimulating Nod1. Analysis of synthetic compounds revealed stereoselectivity of the DAP residue and that conjugation of lipophilic acyl residues specifically enhances the Nod1 stimulatory activity of the core iE-DAP. Furthermore, we demonstrate that lipophilic molecules induce and/or enhance the secretion of innate immune mediators from primary mouse mesothelial cells and human monocytic MonoMac6 cells, and this effect is mediated through Nod1. These results provide insight into the mechanism of immune recognition via Nod1, which might be useful in the design and testing of novel immunoregulators.  相似文献   

15.
Supramolecular clusters at the immunological synapse provide a mechanism for structuring complex communication networks between cells of the immune system. Regulating intra- and intercellular trafficking of proteins and lipids to and from the immunological synapse provides an additional level of complexity in determining the functional outcome of immune cell interactions. An emergent principle is that molecules requiring tightly regulated cell surface expression, e.g. negative regulators of cell activation or molecules promoting cytotoxicity, are trafficked to the immunological synapse from intracellular secretory as required lysosomes. Many molecules required for the early stages of the intercellular communication are already present at the cell surface, sometimes in lipid rafts, and are rapidly translocated laterally to the intercellular contact. Our understanding of these events critically depends on utilizing appropriate technologies for probing supramolecular recognition in live cells. Thus, we also present here a critical discussion of the technologies used to study lipid rafts and, more broadly, a map of the spatial and temporal dimensions covered by current live cell physical techniques, highlighting where advances are needed to exceed current spatial and temporal boundaries.  相似文献   

16.
Gene-for-gene disease resistance in plants is initiated by highly specific molecular recognition processes, which often lead to a cell-death phenotype termed the hypersensitive response (HR). Recent studies have yielded insight into recognition events, and have begun to explain why the virulence and avirulence activities of pathogen effector molecules often appear to be linked. The nucleotide-binding (NB)-leucine-rich repeat (LRR) proteins appear to be central to both recognition and the activation of defence responses. New structure-function studies suggest that intramolecular interactions are important in the regulation of these proteins.  相似文献   

17.
Maintaining corneal integrity how the "window" stays clear   总被引:3,自引:0,他引:3  
The anterior surface of the eye is composed of the cornea, conjunctiva, and the zone between the two called the limbus. The cornea must maintain optical clarity to retain good vision. However, the ocular surface is vulnerable to trauma, microbial infection, and exposure to environmental toxins. This places the cornea, especially, at risk for disruptions of the epithelial barrier and subsequent immunopathological events. Cell-cell and cell-matrix attachment junctions incorporating adhesion molecules ensure that the epithelial barrier remains intact. Protein components of the basement membrane, including laminins, are vital to the adhesion of corneal epithelial cells to the underlying stroma and function to enhance the strength of the bond between epithelium and connective tissue. Epithelial cells also play an early and crucial role in the initiation of ocular surface responses should a potentially antigenic molecule enter into deeper corneal tissues. For example, epithelial cells may produce and release cytokines such as interleukin-1 (IL-1). The delicate balance between the matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are central to mechanisms regulating dissolution of the extracellular matrix that may be a consequence of infection or wound healing. Adhesion molecules, cytokines and chemokines, and MMPs and TIMPs thus participate in the corneal response to immunologic challenge or wounding. They may also be involved in corneal pathologies associated with genetic diseases, diabetes, and vitamin A deficiency. In addition these molecules are components of cellular pathways underlying the clinical complications often observed with contact lens wear and refractive surgeries used to improve visual acuity.  相似文献   

18.
Zheng L 《Parassitologia》1999,41(1-3):181-184
The phenomenon of encapsulation of invading organisms is widespread in insects. Co-evolution has produced an intricate balance between the immune responses of the host and immune-suppressive (or immune-evading) properties of the parasite. Genome-wide genetic mapping revealed different loci in Anopheline mosquitoes were involved in melanotic encapsulation of different malaria parasites. Certain isolates of human malaria parasites can still suppress or avoid the immune response from refractory mosquitoes. Similar interactions with parasitoids were observed in Drosophila melanogaster. Species-specific encapsulation locus was identified for two parasitoids, respectively, and virulent strain of parasitoid can suppress the immune system of an otherwise resistant fruitfly. It is believed that the encapsulation loci in both mosquitoes and fruitfly may encode gene products that function at the early stages of parasite/parasitoid recognition or immediate signaling events. Future research on membrane receptor molecules and their roles in insect immunity will yield interesting insights into mosquito-parasite interactions.  相似文献   

19.
Blows MW  Higgie M 《Genetica》2002,116(2-3):239-250
It is becoming increasingly apparent that at least some aspects of the evolution of mate recognition may be amenable to manipulation in evolutionary experiments. Quantitative genetic analyses that focus on the genetic consequences of evolutionary processes that result in mate recognition evolution may eventually provide an understanding of the genetic basis of the process of speciation. We review a series of experiments that have attempted to determine the genetic basis of the response to natural and sexual selection on mate recognition in the Drosophila serrata species complex. The genetic basis of mate recognition has been investigated at three levels: (1) between the species of D. serrata and D. birchii using interspecific hybrids, (2) between populations of D. serrata that are sympatric and allopatric with respect to D. birchii, and (3) within populations of D. serrata. These experiments suggest that it may be possible to use evolutionary experiments to observe important events such as the reinforcement of mate recognition, or the generation of the genetic associations that are central to many sexual selection models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号