首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract In vitro antigenic reactivity of lipid A from Pseudomonas diminuta and Pseudomonas vesicularis with homologous and heterologous lipid A antibodies including monoclonal antibodies was studied by inhibition test of enzyme-linked immunosorbent assay (ELISA). The results suggest that both Pseudomonas lipid As have very similar epitopes, including species-specific and cross-reactive epitopes as compared with enterobacterial lipid A.  相似文献   

2.
In vitro antigenic reactivity of lipid A from Pseudomonas diminuta and Pseudomonas vesicularis with homologous and heterologous lipid A antibodies including monoclonal antibodies was studied by inhibition test of enzyme-linked immunosorbent assay (ELISA). The results suggest that both Pseudomonas lipid As have very similar epitopes, including species-specific and cross-reactive epitopes as compared with enterobacterial lipid A.  相似文献   

3.
Moenomycin A is an amphiphilic phosphoglycolipid antibiotic that interferes with the transglycosylation step in peptidoglycan biosynthesis. The antibiotic consists of a branched pentasaccharide moiety, connected to the moenocinol lipid via a glycerophosphate linker. We have previously described the selection of aptamers that require the lipid group and the disaccharide epitopes of the oligosaccharide moiety for moenomycin binding. Here we report that the enriched moenomycin-binding library contains sequences that evolved for specific recognition of the unpolar lipid group of the antibiotic. These results suggest that the evolution of hydrophobic binding pockets in RNA molecules may be much more common than previously assumed.  相似文献   

4.
The detailed chemical structure of lipid A of Shigella sonnei phase II was elucidated. The lipid A backbone consists of a β-1,6-linked glucosamine disaccharide substituted with (mono) phosphates both at C-1 and C-4′. This was shown by selective degradation followed by 31P-NMR studies. C-4 and C-6′ were found to contain unsubstituted hydroxyl groups, the latter being the point of attachment of KDO as reported for other enterobacterial lipids A.The amino groups of the glucosamine disaccharide are substituted by 3-hydroxy fatty acids: 3-O-(14:0) 14:0 at the non-reducing glucosamine and 3-O-(12:0) 14:0 at the reducing glucosamine. In contrast to earlier reports, no ethanolamine or phosphodiester linkages were found in lipid A.  相似文献   

5.
Abstract Experiments were designed to investigate the significance of lipid A partial structures, precursor Ia (compound 406), and lipid X (compound 401) to serve as antagonists of interleukin 1 (IL-1) release from human mononuclear cells and monocytes induced by lipopolysaccharide (LPS, endotoxin) of Salmonella aborus equi or synthetic Escherichia coli lipid A (compound 506). A definite inhibition mediated by lipid A partial structures on IL-1 release induced by LPS or lipid A was found in repeated experiments. The inhibitory effect was exterted not only on IL-1 release, but also on IL-1 peptide synthesis at the intracellular level. The results also show that lipid A partial structures have suppressive effects even when added 1–4 after LPS or lipid A. We conclude from these results that lipis A partial structures (precursor Ia and lipid X) have potent immunomodulatory effects on LPS- and lipid A-induced IL-1 release and may become useful reagents to study the mechanism of interaction of LPS and lipid A with cells of the immune system.  相似文献   

6.
Natural polyreactive antibodies can accommodate chemically unrelated epitopes, such as lipids and proteins, in a single antigen binding site. Because liposomes containing lipid A as an adjuvant can induce antibodies directed against specific lipids, we immunized mice with liposomes containing lipid A together with a protein or peptide antigen to determine whether monoclonal antibodies generated after immunization would be specifically directed both to the liposomal lipid (either cholesterol or galactosylceramide) and also to the accompanying liposomal protein or peptide. Monoclonal antibodies were obtained that bound, by ELISA, to cholesterol and to recombinant gp140 envelope protein from HIV-1, or to galactosylceramide and to an HIV-1 envelope peptide. Surface plasmon resonance studies with the former antibody showed that the liposomal cholesterol and liposomal gp140 each contributed to the overall binding energy of the antibody to liposomes containing cholesterol and protein.  相似文献   

7.
以脂质A为靶标,筛选噬菌体展示十二肽库,三轮后随机挑取14个噬菌体克隆进行结合活性鉴定,并对5个克隆进行序列分析。结果表明,14个克隆全部是阳性克隆,测序结果显示4个阳性克隆的序列完全一样。说明筛选到了一个脂质A的结合多肽。  相似文献   

8.
Lipid A in lipopolysaccharide (LPS) of Escherichia coli mutant strains was modified by the introduction of myristoyltransferase gene cloned from Klebsiella pneumoniae. When the gene was introduced into the mutant having lipid A containing only 3‐hydroxymyristic acids, it produced lipid A with two additional myristic acids (C14:0). When the same gene was introduced into the mutant with pentaacylated lipid A containing one lauric acid (C12:0), C12:0 was replaced by C14:0. IL‐6‐inducing activity of LPS with modified lipid A structure suggested that C12:0 in lipid A could be replaced by C14:0 without changing the immunostimulating activity.  相似文献   

9.
Lectin-binding curves are reported for a concanavalin A receptor glycoprotein in lipid bilayers and intact cells. The results are consistent with previous studies of the structurally dissimilar transmembrane glycoprotein, glycophorin. High-affinity lectin binding to model membranes was influenced by the presence of apparently unrelated macromolecules, which we suggest is an example of receptor modulation by local interactions. Furthermore, high-affinity binding to the model membranes displayed characteristics, including positive cooperativity, similar to those seen with intact cells.  相似文献   

10.
该研究以ApoE基因缺陷小鼠和高脂饲料诱导的高血脂症模型小鼠为对象,采用药理学方法研究了番茄皂苷A对血脂及肝脏脂肪的调节作用。在ApoE基因缺陷小鼠和高脂饲料诱导的高血脂症模型小鼠中,通过灌胃给予番茄皂苷A:取血,测定血清中总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDLC)、低密度脂蛋白胆固醇(LDLC)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、尿素氮(BUN)、肌酐(Cr)、葡萄糖(Glu)的含量和活性;处死小鼠后,取肝脏称重,计算肝脏指数;精确称取一部分肝脏,测定肝脏脂质的含量。结果表明:番茄皂苷A对ApoE基因缺陷小鼠可以降低血清TC、HDLC、LDLC的含量,对ALT、AST、BUN、Cr、Glu没有影响,说明番茄皂苷A可以降低ApoE基因缺陷小鼠血中胆固醇含量,对血糖没有影响,对肝肾功能无影响;对高脂饲料诱导的高血脂症模型小鼠,可以降低血清TC、HDLC的含量,可以降低肝脏TC的含量,对ALT、AST、BUN、Cr、Glu没有影响,说明番茄皂苷A可以改善高脂饲料诱导的高血脂症模型小鼠的脂质代谢,且对肝肾功能无影响。该研究结果表明番茄皂苷A具有一定的降低胆固醇的作用,且不影响肝肾功能。  相似文献   

11.
A synthetic lipid A of Porphyromonas gingivalis strain 381 (compound PG-381), which is similar to its natural lipid A, demonstrated no or very low endotoxic activities as compared to Escherichia coli-type synthetic lipid A (compound 506). On the other hand, compound PG-381 had stronger hemagglutinating activities on rabbit erythrocytes than compound 506. Compound PG-381 also induced mitogenic responses in spleen cells from lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice, as well as LPS-responsive C3H/HeN mice. The addition of polymyxin B resulted in the inhibition of mitogenic activities, however, compound 506 did not show these capacities. Additionally, compound PG-381 showed a lower level of activity in inducing cytokine production in peritoneal macrophages and gingival fibroblasts from C3H/HeN mice, but not C3H/HeJ mice, in comparison to compound 506. Thus, this study demonstrates that the chemical synthesis of lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, confirms its low endotoxic potency and immunobiological activity.  相似文献   

12.
Structurally defined immunostimulatory adjuvants play important roles in the development of new generation vaccines. Here described are the syntheses of three monophosphoryl lipid A analogues (1-3) with different substitution at 3-O-position of the reducing sugar and their potent immunostimulatory adjuvant activity. The syntheses involve the preparation of glycosylation acceptors benzyl 3,4-di-O-benzyl-2-deoxy-2-[(R)-3-tetradecanoyloxytetradecanamido]-beta-D-glucopyranoside (16) and benzyl 3-O-allyl-4-O-benzyl-2-deoxy-2-[(R)-3-tetradecanoyloxytetradecanamido]-beta-D-glucopyranoside (17). The glycosylation reactions between the donor 4,6-di-O-benzylidene-2-deoxy-2-(2',2',2'-trichloroethoxycarbonylamino)-alpha-d-glucopyranosyl trichloroacetimidate (21) and acceptors 16 and 17 provide the desired beta-(1-->6)-linked disaccharides 22 and 23, respectively. Selective reductive ring opening of the 4,6-di-O-benzylidene group, installation of a phosphate group to the 4'-hydroxyl group, and the final global debenzylation produce the designed monophosphoryl lipid A analogues 1-3. All three synthetic analogues induce antigen specific T-cell proliferation and interferon-gamma (IFN-gamma) production in ex vivo experiments with a totally synthetic liposomal vaccine system. The immunostimulatory potency of compound 1-3 is in the same order of magnitude as that of the detoxified natural lipid A product isolated from Salmonella minnesota R595 (R595 lipid A). The substituent at the 3-O-position of the reducing sugar does not have much effect on the adjuvant activity of monophosphoryl lipid A analogues. The preliminary lethal toxicity study indicates that the 3-O-acylated hepta-acyl monophosphoryl lipid A may not be more toxic than its 3-O-deacylated hexa-acyl analogue.  相似文献   

13.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

14.
Abstract Porphyromonas gingivalis 381 lipid A possesses 1-phospho β(1–6)-linked glucosamine disaccharide with 3-hydroxy-15-methylhexadecanoyl and 3-hexadecanoyloxy-15-methylhexadecanoyl groups at the 2- and 2′-positions, respectively. P. gingivalis lipid A indicated lower activities in inducing interleukin-1β (IL-1β) mRNA expression, pro-IL-1β protein synthesis and IL-1β production than those of synthetic Escherichia coli lipid A (compound 506) in human peripheral blood mononuclear cells (PBMC). The induction of IL-6 mRNA and IL-6 synthesis by P. gingivalis lipid A were comparable to those of compound 506. Herbimycin A, H-7 and H-8, inhibitors of tyrosine kinase, protein kinase C and cyclic nucleotide-dependent protein kinase, inhibited P. gingivalis lipid A- and compound 506-induced IL-1β and IL-6 synthesis. W-7, an inhibitor of calmodulin (CaM) kinase, inhibited only P. gingivalis lipid A-induced IL-1β production. The result suggests that the CaM kinase-dependent cascade is involved in the down-regulation of IL-1β production by P. gingivalis lipid A. P. gingivalis lipid A and compound 506 also functioned in the induction of tyrosine and serine/threonine phosphorylation of several proteins in PBMC. P. gingivalis lipid A inhibited specific binding of fluorescein-labelled E. coli LPS to the PBMC. The nontoxic lipid A of P. gingivalis , having a chemical structure different from toxic compound 506, appears to induce the up- and down-regulation of the differential cytokine-producing activities following the activation of various intracellular enzymes including the CaM kinase through the common receptor sites of LPS.  相似文献   

15.
Abstract The chemical structure of the lipid A moiety of the lipopolysaccharide of the type strain of Plesiomonas shigelloides was elucidated. It consists of a β-(1 → 6)-linked glucosamine disaccharide carrying phosphate groups at C-1 of the reducing and at C-4' of the non-reducing glucosamine. It contains a total of 6 residues of fatty acids, 2 amide-linked and 4 ester-linked. The amino groups of the backbone disaccharide are N -acylated by substituted 3-hydroxyacyl residues: at the reducing glucosamine by 3-O-(14:0)14:0; and at the non-reducing glucosamine by 3-O-(12:0)14:0.
Two residues of 3-hydroxytetradecanoic acid are linked to C-3 and C-3' of the glucosamine residues; the hydroxy groups of these ester-linked 3-hydroxytetradecanoic acids are unsubstituted. In free lipid A, the hydroxyl groups at C-4 and C-6' are unsubstituted, indicating that the 2-keto-3-deoxyoctonic acid (KDO) is linked to C-6' of the non-reducing glucosamine, as was shown with enterobacterial lipid A. The taxonomical significance of these structural details is discussed.  相似文献   

16.
The chemical structure of the lipid A component of lipopolysaccharide excreted into the liquid medium by the plant pathogenic enterobacterium Erwinia carotovora FERM P-7576 was characterized. It consists of a -1, 6-linked glucosamine disaccharide which carries ester-and amide-bound fatty acids and phosphate similar to the lipid A from other gram-negative bacteria. The lipid A preparation was not uniform in the number and composition of the fatty acids linked to the disaccharide. Four prominent lipids A were involved, they were composed of five to seven residues of fatty acid. Among them the major component was hexa-acyl lipid A, in which the hydroxyl group at position 3 and the amino group of the non-reducing glucosamine unit carry 3-dodecanoyl-oxytetradecanoyl residues. Positions 2 and 3 of the reducing glucosamine unit were substituted by 3-hydroxytetradecanoic acid. In the hepta-acyl lipid A, an additional hexadecanoic acid was linked to the hydroxyl group of the 3-hydroxytetradecanoyl residue at position 2 of the hexa-acyl lipid A. Two penta-acyl lipids A were the homologs of the hexa-acyl lipid A with decreasing acylation. Dodecanoic acid was missing from one, and 3-hydroxytetradecanoic acid from another. 3-Dodecanoyloxytetradecanoyl residue at position 3 differentiates E. carotovora lipid A from that of other gram-negative bacteria.Abbreviations LPS lipopolysaccharide - GlcN glucosamine - KDO 3-deoxy-d-manno-octulosonic acid - FAB-MS fast atom bombardment mass spectrometry - u atomic mass unit  相似文献   

17.
Abstract A lipid component was isolated from the fatty acid fraction of acid hydrolysates of lipid A derived from Pseudomonas diminuta JCM 2788 and Pseudomonas vesicularis JCM 1477 lipopolysaccharide. By structural analysis of the lipid and its trimethylsilyl and acetyl derivatives by thin-layer chromatography, gas chromatography-mass spectrometry, mass spectrometry, infrared spectrometry and 13C-NMR, it was identified as 9-hydroxy-δ-tetradecalactone.  相似文献   

18.
The purpose of this research was to investigate novel particulate carrier system such as solid lipid nanoparticles (SLN) for topical application of vitamin A palmitate and to study its beneficial effects on skin. Topical gels enriched with SLN of vitamin A were prepared. The solid lipid nanoparticulate dispersion was prepared using high-pressure homogenization technique and was incorporated into polymeric gels of Carbopol, Pemulen, Lutrol, and Xanthan gum for convenient application. The nanoparticulate dispersion and its gels were evaluated for various parameters such as particle size, in vitro drug release, in vitro penetration, in vivo skin hydration, and skin irritation. The solid lipid nanoparticulate dispersion showed mean particle size of 350 nm. Differential scanning calorimetry studies revealed no drugexcipient incompatibility. In vitro release profile of vitamin A palmitate from nanoparticulate dispersion and its gel showed prolonged drug release up to 24 hours, which could be owing to embedment of drug in the solid lipid core. In vitro penetration studies showed almost 2 times higher drug concentration in the skin with lipid nanoparticle-enriched gel as compared with conventional gel, thus indicating better localization of the drug in the skin. In vivo skin hydration studies in albino rats revealed increase in the thickness of the stratum corneum with improved skin hydration. The developed formulation was nonirritant to the skin with no erythema or edema and had primary irritation index of 0.00. Thus it can be concluded that SLN represents a promising particulate carrier having controlled drug release, improved skin hydration, and potential to localize the drug in the skin with no skin irritation.  相似文献   

19.
3‐deoxy‐d ‐manno‐octulosonic acid‐lipid A (Kdo2‐lipid A) is the essential component of lipopolysaccharide in most Gram‐negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll‐like‐receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2‐lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram‐negative bacteria, indicating conserved Kdo2‐lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2‐lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2‐lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2‐lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2‐lipid A/TLR4 antagonists can also be applied in anti‐inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2‐lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development.  相似文献   

20.
Lipid A structure at the air-aqueous interface has been studied using pressure-area isotherm methods coupled with the surface X-ray scattering techniques of X-ray reflectivity (XR) and grazing incidence X-ray diffraction (GIXD). Lipid A monolayers were formed at the air-aqueous interface to represent the lipid moiety of the outer membrane of Gram-negative bacteria. Lipid A structure was characterized at surface pressures between 10 and 35 mN/m. Interactions of α-helical antimicrobial peptides LL-37, SMAP-29 and D2A22 with lipid A monolayers were subsequently studied. Although insertion into the lipid A monolayers was observed with the α-helical peptides, little change was seen from the X-ray data, suggesting that the lipid A hydrocarbon chains are involved in reorientation during insertion and that the hydrocarbon chains have a relatively rigid structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号