首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isodicentric chromosomes are considered the most common structural abnormality of the human Y chromosome. Because of their instability during cell division, loss of an isodicentric Y seems mainly to lie at the origin of mosaicism in previously reported patients with a 45,X cell line. Here, we report on a similar case, which, however, turned out to be an example of dynamic mosaicism involving isodicentric chromosome Y and isochromosome Y after FISH with a set of chromosome Y-specific probes and multicolor banding. Cytogenetic analyses (GTG-, C-, and Q-banding) have shown three different cell lines: 45,X/46, X,idic(Y)(q12)/46,X,+mar. The application of molecular cytogenetic techniques established the presence of four cell lines: 45,X (48%), 46,X,idic(Y)(q11.23) (42%), 46,X,i(Y)(p10) (6%) and 47,X,idic(Y)(q11.23),+idic(Y)(q11.23) (4%). According to the available literature, this is the first case of dynamic mosaicism with up to four different cell lines involving loss, gain, and rearrangement of an idic(Y)(q11.23). The present report indicates that cases of mosaicism involving isodicentric and isochromosome Ys can be more dynamic in terms of somatic intercellular variability that probably has an underappreciated effect on the phenotype.  相似文献   

2.
Three patients carrying an isodicentric (idic) Y chromosome associated with a mosaic 45,X cell line were studied using molecular techniques. Genotype-phenotype correlations suggested an effect of the 45,X cell line on sexual differentiation. A relationship was established between instability of the idic(Y) chromosome and localization of the breakpoint on Yq, and between azoospermia and deletion of interval 6 on Yq. Received: 31 May 1996 / Revised: 12 July 1996  相似文献   

3.
Different chromosome Y abnormalities in Turner syndrome.   总被引:2,自引:0,他引:2  
A 17-year-old phenotypically female girl was referred for evaluation because of short stature and primary amenorrhea. Cytogenetic analysis showed a mosaic 46,XY/45,X/47,XYY/46,X,idic(Yq)/47,XY,idic(Yq)/48,XXY,idic(Yq)/46,X,t(C;Y) karyotype. Conventional cytogenetic results were supplemented with fluorescence in situ hybridization (FISH) techniques to ensure a better characterization of abnormalities. By using FISH, a supernumerary marker chromosome derived from chromosome Y which could not be detected by conventional cytogenetics was revealed. Furthermore, additional abnormalities and their frequencies were highlighted by the application of DNA probes specific for X and Y chromosomes. Thus, FISH proved useful in determining low frequency cell lines which would need analysis of a large number of good quality metaphase spreads by conventional cytogenetic techniques: it helped in identifying the nature and the origin of unknown markers and rearrangements which have important implication in sexual differentiation and development of gonadal tumours.  相似文献   

4.
A possible active segment on the inactive human X chromosome   总被引:6,自引:0,他引:6  
An idic(Xp-) in which the two X chromosomes are attached short arm to short arm, and which thus has two b regions (the Q-dark segment next to the centromere on Xp) between the inactivation centers, assumed to be situated on the Q-dark region next to the centromere on Xq, showed 63.8% bipartite Barr bodies as compared with 22.2% formed by idic(Xq-). In addition, the mean distance of the two parts of the Barr bodies in the fibroblasts of a patient with idic(Xp-) is significantly greater than in the cases with one or no b region. Contrary to the other patients with abnormal X chromosomes, the buccal cells of a woman idic(Xp-) showed a number of bipartite Barr bodies. — To explain these observations we have put forward the hypothesis that the b region on the Xp always remains active and thus, when the rest of the chromosome forms a Barr body, this segment is extended, allowing the two parts of the X chromatin to get farther apart and at the same time increasing the percentage of bipartite bodies.  相似文献   

5.
An infant with ambiguous genitalia was found to have a karyotype 45,X/46,X,r(Y)(p11.2;q11.23)/47,X,idic(Y)(p11.2),idic(Y)(p11.2) using G-banding, C-banding and FISH. Examination of the genitalia revealed a phallus measuring 1.5 cm in length and 0.5 cm wide with perineal orifice. Subtle phenotypic features consistent with Turner syndrome were not present. Genital ultrasonography revealed the presence of an infantile uterus. Endoscopy of the vagina, uterus and cervix appeared normal.  相似文献   

6.
Segregation after mitotic crossing-over in an isodicentric (idic) X chromosome with one active and one inactive centromere has given rise to two new cell lines, one in which the idic(Xpter) chromosome has two active centromeres (most of these chromosomes also have an inversion) and another in which neither centromere is active. The two X chromosomes are attached at the telomeres of their short arms. Similar segregation has given rise to two other cell lines with idic(Xq-) chromosomes. Other observations on segregation after mitotic crossing-over are reviewed. Unequal crossing-over has apparently played a major role in the evolution of various genes and heterochromatin. Retinoblastoma and Wilms tumor are in some cases associated with homozygosity of a chromosome segment resulting from mitotic crossing-over. Similarly, the high incidence of cancer in Bloom syndrome may be caused by mitotic crossing-over leading to homozygosity or amplification of oncogenes.  相似文献   

7.
Ovarian dysgenesis due to an idic(X)(q2803)   总被引:1,自引:0,他引:1  
A 17-year-old female patient with gonadal dysgenesis but no other turnerian features was found to have a 46,X,idic(X)(pter----q2803:q2803----pter) karyotype in her lymphocytes. Replication of the rearranged X was consistently late and symmetrical. It is postulated that the ovarian dysgenesis usually seen in nonmosaic carriers of Xq;Xq terminal rearrangements may be secondary to a nonreactivation of the abnormal chromosome before meiosis.  相似文献   

8.
A complex mosaicism involving the X chromosome was found in a 35-year-old female affected by secondary amenorrhea and short stature. Her karyotype was: 45,X[20]/46,X,del(X)(pter-->q26::qter)[15]/46,X,idic(X)(pter-->q26::q26-->pter)[9]. No cell contained both abnormal X chromosomes. This observation would suggest a possible mechanism underlying the formation of isodicentric chromosomes.  相似文献   

9.
Dicentrics are among the most common structural abnormalities of the human Y chromosome. Predicting the phenotypic consequences of different duplications and deletions of dicentric Y chromosomes is usually complicated by varying degrees of mosaicism (45,X cell lines), which may, in some cases, remain undetected. Molecular studies in patients with dicentric Y chromosomes have been few, and only two studies have attempted to determine the presence of SRY (the putative testis-determining factor gene). We report an 18-year-old female with short stature, amenorrhea, hirsutism, hypoplastic labia minora, and clitoromegaly who has a 45,X/46,X,idic(Y)(p11.32)/47,X,idic(Y)(p11.32),idic(Y) (p11.32) karyotype. Southern analysis using Y-specific probes (Y97, 2D6, 1F5, pY3.4) and polymerase chain reaction (PCR) analysis using primers for ZFY and SRY were positive for all loci tested, indicating that almost all of the Y chromosome was present. Our findings and an extensive review of the literature emphasize the importance of molecular analyses of abnormal Y chromosomes before any general conclusions can be reached concerning the relative effects of the Y-chromosome abnormality and mosaicism on sexual differentiation.  相似文献   

10.
Summary Among 209 patients with Shereshevsky-Turner syndrome, 69 women with structural aberrations of X chromosome were detected: 46,X, i(Xq)-11; 45,X/46,X,i(Xq)-24; 45,X/46,X,r(X)-14; 45,X/46,X,f(X or Y)-10; 45,X/46,X,del(Xq)-4; 45,X/46,X,del(Xp)-2; 45,X/46,X,idic(X)-2; 46,X,idic(X)-1; and 46,X,t(X,2)-1. All the patients with structural abnormalities of X chromosome were short in stature, but in no group was it as low on the average as in 45,X cases. Somatic signs were noticed in all structural changes of X, but they were less frequent and less pronounced. In some patients with r(X) and i(Xq), spontaneous menstrual bleeding and breast development was found.The structurally abnormal X chromosome appears to be functionally inactive, the phenotype of patients with structural rearrangements being close to the phenotype of patients with X monosomy. At the same time, the abnormal X might have certain effects in early embryogenesis which mitigated the further development of the Shereshevsky-Turner syndrome.  相似文献   

11.
Summary Two women with primary amenorrhoea and few other stigmata of Turner's syndrome were found to be chromosome mosaics: 45,X/46,X,idic(Y). In Case 1, the dicentric isochromosome Y was found to have a long-arm breakpoint of formation. This structure was interpreted as containing two Y short arms and centromeres separated by a region derived from the proximal Y long arm. One of the centromeres in the Case 1 —idic(Y) was suppressed in 80% of cells in blood, and in these cells it appeared as a regular Y-shaped chromosome. In Case 2 the idic(Y) was derived by a short-arm breakpoint of formation. In all the dicentrics of this case with one primary constriction (functional monocentrics) there was a single Cd band. In the 10% of dicentrics with two primary constrictions, there were two Cd bands. It is argued that the instability of sex isochromosomes is due to this functional dicentricity in some cells. These cases are compared with 42 other Y isochromosomes with various short- and long-arm breakpoints of formation. It is suggested that some of the nonheterochromatic, nonfluorescent Y chromosomes previously reported may be explained as dicentric i(Y) with proximal long-arm breakpoints of formation and one suppressed centromere.  相似文献   

12.
Summary We have collected from the literature adult nonmosaic women with the following aberrant X chromosomes: Xp- (52), Xq- (67), idic(Xp-)(10), idic(Xq-)(9), and interstitial deletions (12). Lack of Xp, and especially Xcen-Xp11 (b region), may cause full-blown Turner syndrome. However, individual Turner symptoms, including gonadal dysgenesis, otherwise seem to be randomly distributed with respect to the different Xp and Xq deletions, although breakpoints distal to Xq25 do not give rise to any phenotypic anomalies except in a few cases of secondary amenorrhea or premature menopause. Of the carriers of an Xp- or Xq- chromosome, 65% and 93%, respectively, suffer from ovarian dysgenesis, whereas all idic(Xp-) and idic(Xq-) chromosomes cause primary or secondary amenorrhea. Xq deletions do not induce specific symptoms different from those caused by Xp deletions. Lack of the tip of Xp has led in 46/52 cases to short stature, but 43% of the Xq- carriers are also short. To explain these observations, we propose the following hypothesis. Since deletions of truly inactivated regions do not seem to cause any symptoms, we assume that the b region (Xcen-p11) always stays active in a normal inactive X, but is inactivated in deleted X chromosomes, especially in Xq- chromosomes. In some cases, inactivation may spread to the tip of Xp; this would explain the apparently variable behavior of the Xg and STS genes, and the short stature of some Xq- carriers. Full chromosome pairing seems to be a prerequisite for the viability of oocytes and thus for gonadal development. Deleted X chromosomes necessarily leave a portion of the normal X unpaired and isodicentrics probably interfere with pairing, resulting in atresia of oocytes. The role played by the critical region (Xq13–q24) in ovarian development is still unclear.  相似文献   

13.
X-chromosome restriction fragment length polymorphisms were used to determine the parental origin of the isochromosome in nine individuals with an i(Xq) or idic(Xq). We were able to specify the parental source of eight of the nine isochromosomes, with six being maternal and two paternal in origin. In two cases, one i(Xq) and one idic(Xq), we used Xq markers to determine the level of heterozygosity in the isochromosome. Each was homozygous at all tested loci, suggesting that each originated from a single X chromosome and not from an exchange of material between two X's.  相似文献   

14.
15.
Summary The morphologic and staining characteristics of the sex chromatin bodies and the DNA replication patterns were studied in a patient with a 45,X/46,X,idic(X)(p22.3::p22.3) karyotype and in a normal woman. The analysis showed a relatively high frequency of bipartite Barr bodies as well as some variation of the distance, staining intensity, and size relationship between their halves. Regarding the DNA replication studies, in 71% of the cells the abnormal X chromosome showed a synchronous pattern, and in the remaining 29%, in which a slight asynchrony was present, an almost equal proportion of early and late functional and nonfunctional centric halves was observed. Furthermore, the atypical chromosome had a quite similar replication pattern to the late replicating X chromosome of the normal woman, suggesting that its sequence of DNA synthesis was not altered.Supported in part by grant No. 1479 from the Programa Nacional de la Salud, Conacyt (México)  相似文献   

16.
46,X,i(Xq)/47,XX,+13 mosaicism   总被引:1,自引:0,他引:1  
A 10-year-old girl with short stature and other features of Turner's syndrome was found to be a mosaic consisting of 46,X,i(Xq) and 47,XX,+13 cell lines, a hitherto undescribed situation. She had none of the clinical features of trisomy 13 syndrome, with a possible exception of postaxial polydactyly of the left foot. Her PHA-stimulated blood lymphocytes and EB virus-transformed B lymphocytes both revealed the Xi(Xq)/XX,+13 mosaicism, while her skin fibroblasts showed an exclusively 46,X,i(Xq) karyotype. Studies using Q-and R-banding heteromorphisms as markers indicated that the patient started as a 13 trisomic zygote resulting from a maternal meiotic error, followed by the loss of chromosome 13 at an early mitotic division. C-banding analysis revealed two C banding blocks in the iso X chromosome, an indication that the chromosome was dicentric. BrdU-Hoechst-Giemsa analysis revealed that the iso X chromosome was late-replicating with both its arms either synchronously or asynchronously replicating. The iso X chromosome was thus designated as idic (Xq)(p11:p11). In view of the presence of the XX cell line, it was concluded that the patient started as an XX,+13 zygote, followed by two mitotic events, the loss of a chromosome 13 and the formation of the iso X chromosome, occurring either simultaneously or in succession.  相似文献   

17.
OBJECTIVE: To delineate the phenotypic spectrum (clinical and gonadal features) from patients with a 45,X/46,X,mar(Y) karyotype based upon of their clinical, histological, cytogenetic and molecular evaluation. SUBJECTS: Three patients with a 45,X/46,X,mar(Y) karyotype. METHODS: Clinical assessment, karyotyping, endocrine evaluation, FISH and PCR analyses of several Y-chromosome loci and direct sequencing of the SRY gene. RESULTS: The patients, two males and one female had varying degrees of impairment of sexual differentiation, with or without testis formation. One patient (reared as female and aged 17 years) had Turner syndrome with bilateral streak gonads. The second patient (2.4 years old) had ambiguous genitalia and presented a dysgenetic testis with a contralateral streak gonad. A third patient (26 years old) had bilateral dysgenetic testes (dysgenetic male pseudohermaphroditism). The ratio of 45,X vs. 46,X,+mar(Y) cells differed between patients and between different tissues. In each case the marker sexual chromosome was identified as a rearranged Y-chromosome (idic(Y)) using FISH and PCR analyses. In all cases the SRY gene was present in all tissues studied. No mutations were identified in this gene in any of the patients. CONCLUSIONS: The extent of male or female differentiation in these patients depends in part on the prevalence, time occurrence, and distribution of the 45,X cell line.  相似文献   

18.
We report the results of a molecular investigation of 25 patients who had Turner syndrome and who had previously been subject to analysis using cytogenetic techniques. When in situ hybridization and polymerase chain reaction (PCR) techniques were applied, a larger number of mosaic individuals were observed than were detected by cytogenetic methods. This was mainly because of the presence of the cell line 46,XX. The most frequent mosaics were 45,X/46,XX (36%); the presence of isochromosomes comprised 24% and fragments 12%. The patients who had been previously diagnosed with mosaicism displayed a higher complexity in their karyotypes because of the presence of new cellular lines. The isodicentric X chromosome for the long arm, idic(Xq), gave rise to complex mosaics of up to nine cell lines. The application of fluorescence in situ hybridization and PCR led to a clearer definition of alterations at the centromeric level and the identification of the nature of chromosome fragments. Received: 2 August 1995 / Revised: 5 February 1996  相似文献   

19.
The non-covalent enzyme . inhibitor complex dissociation constants and the enzyme phosphorylation rate constants were measured as functions of pH in butyrylcholinesterase (actylcholine acylhydrolase, EC 3.1.1.8) reaction with organophosphorus inhibitors (C2H5O)2P(O)SX, where X = (CH2)3SC2H5 and (CH2)6S+(CH3)C2H5. Two ionizing groups, a basic and an acidic one, were revealed in the overall reaction of the enzyme inhibition within the pH range between 5 and 10.5. In the enzyme phosphorylation step only the acidic group was found, while the basic group appeared in the non-covalent binding step of both the ionic and non-ionic compounds. The results strongly imply the participation of the basic functional group in the conformation transition which affects the ability of butyrylcholinesterase to bind hydrophobic reagents in the acidic pH region.  相似文献   

20.
Fourteen individuals with an i(Xq) or idic(Xq) were studied using RFLP analysis in order to determine both parental origin and extent of heterozygosity of the isochromosome and to search for the presence of short-arm material. In five cases the isochromosome was paternally derived, while nine patients had a maternal i(Xq). The analysis of heterozygosity of the nine maternally derived isochromosomes by using Xq markers showed heterozygosity in two cases, suggesting an origin from two homologous X chromosomes. Homozygosity was found at all informative loci in seven cases, which therefore are probably the product of either centromere misdivision or sister-chromatid exchange. Presence of Xp markers was seen both in the three i(Xq) chromosomes which appeared dicentric by cytogenetic analysis and in three additional cytogenetically monocentric cases. Mean parental ages were greater for the maternally derived cases as compared with the paternally derived cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号