首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous investigation, I have shown that the kinetics of the Ca uniporter change fundamentally when mitochondria have transitorily lost their membrane potential. The sigmoidal kinetics, usually observed in liver mitochondria, became almost hyperbolic. This means an increase in the affinity for calcium, and hence a considerable acceleration of Ca uptake in the range of low, e.g., physiological calcium concentration. In this investigation I show that extramitochondrial calcium released from the deenergized mitochondria causes the allosteric activation of the Ca uniporter. The dependence of the allosterical activation on the extramitochondrial Ca2+ concentration and on time is described. It is also reported that it is possible to activate allosterically the Ca uniporter of energized mitochondria by a short-term elevation of the extramitochondrial Ca2+ concentration. The process of activation is reversible. It is quickly reversed by the addition of chelators for Ca2+, and it is slowly reversed when the activating Ca2+ has to be removed by the mitochondrial Ca uniporter, though the bulk of extramitochondrial calcium is taken up by it very quickly. Several kinetics of the Ca uniporter are described. The implications of continually changing kinetics of the Ca uniporter are considered for carbon tetrachloride intoxication and the action of alpha 1-adrenergic agonists in liver cells.  相似文献   

2.
Calcium uptake in rat liver mitochondria is accelerated by spermine. At a concentration of 2 microM Ca2+ and 1 mM Mg2+ a maximal, 10-fold activation by 1.2 mM spermidine was obtained; a half-maximal activation was attained with 0.2 mM spermine. Spermidine was far less effective than spermine whereas putrescine was ineffective. The acceleration of Ca uptake at low, physiological Ca2+ concentrations is related to the altered kinetics of the Ca uniporter. Corresponding to the alteration by high Ca2+ concentrations previously described, the kinetics changed from sigmoidal in the absence to nearly hyperbolic in the presence of spermine. Mg2+ behaves as an allosteric inhibitor. This phenomenon of the allosteric activation of Ca uptake could not be observed in heart mitochondria.  相似文献   

3.
The mitochondrial calcium uniporter behaves as a cooperative mechanism, where the velocity is dependent on [Ca2+]ex. Transport kinetics follows a sigmoidal behavior with a Hill coefficient near 2.0, indicating the binding of at least two calcium molecules. Calcium transport in mitochondria is dependent on a negative inner membrane potential and is inhibited by policationic ruthenium compounds. In this study, calcium uptake activity was reconstituted into cytochrome oxidase vesicles by incorporating solubilized mitochondrial proteins. Calcium accumulation plotted against increasing Ca2+ concentrations followed a sigmoidal behavior with a Hill coefficient of 1.53. The uptake was sensitive to ruthenium policationic inhibitors, e.g. ruthenium red and Ru360. After mitochondrial proteins were separated by preparative isoelectrofocusing and incorporated into cytochrome oxidase vesicles, two peaks of calcium uptake activity were recovered. One of the activities was inhibited by Ru360, while the second activity was insensitive to Ru360 and was associated with proteins focused at very acidic isoelectric points. By using a thiol-group crosslinker and radiolabeled Ru360, we proposed a scheme of partial dissociation of the uniporter inhibitor-binding subunit under acidic conditions.  相似文献   

4.
Analysis of the initial rates of 45Ca2+ uptake by rat brain mitochondria in Ca2+-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid buffers indicated that nontelencephalic mitochondria exhibited both a much less pronounced stimulatory effect of spermine and significantly more hyperbolic kinetics of Ca2+ uptake than telencephalic mitochondria. Nontelencephalic mitochondria were also markedly less susceptible to a Ca2+-induced hysteretic allosteric activation of the Ca2+ uniporter. A new Ca2+ loading procedure, which strikingly illustrates differences in mitochondrial Ca2+ buffering characteristics, is also described. In this procedure, low concentrations of Ca2+ (1, 2, or 5 microM) were repetitively added to mitochondria every 30 s while changes in free Ca2+ concentration were recorded. Spermine induced a marked attenuation of the rise in free Ca2+ level under these conditions. Steady-state rates of Ca2+ uptake were determined by a quantitative analysis of the buffering of repetitive Ca2+ additions, and, again, brain regional differences were qualitatively similar to those observed in the initial rate kinetics; Ca2+ uptake by nontelencephalic mitochondria in the steady state was markedly less responsive to stimulation by spermine and appeared to have a more hyperbolic dependence on Ca2+ in the absence of spermine. These results also suggest that there is a lag time in the activation of the uniporter by Ca2+, in addition to the hysteresis that has previously been observed in the deactivation of the uniporter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Manganese stimulates calcium flux through the mitochondrial uniporter   总被引:3,自引:0,他引:3  
Mn2+ alters the balance between the simultaneous uptake and release of Ca2+ across the mitochondrial inner membrane toward a lower external level. Addition of as little as 0.5 microM Mn2+ to energised mitochondria from rat liver, rat heart or guinea-pig brain changed the level at which they buffered Ca2+ in the medium. That extramitochondrial Mn2+ was responsible was suggested by a partial decay in the shift in Ca2+ steady state at a rate similar to the rate at which Mn2+ was accumulated by the mitochondria. The alteration of transmembrane Ca2+ distribution by Mn2+ required that both Mg2+ and Pi be present, and was almost maximal at Mg2+ and Pi levels in the physiological range. Substitution of spermine or Ni2+ for Mg2+, or acetate for Pi, abolished the effect. In contrast to Sr2+, Mn2+ did not inhibit either EGTA- or Ruthenium red-induced release of Ca2+ from the mitochondria. However, when flux through the uniporter was rate-limiting, Mn2+ accelerated Ca2+ uptake. The stimulation showed hyperbolic kinetics, with an element of competition discernible in the Mn2+-Mg2+ interaction. Thus, extramitochondrial Mn2+ at levels occurring in vivo can alter the mitochondrial 'set-point' by stimulating Ca2+ influx through the uniporter.  相似文献   

6.
1. A depolarisation of the membrane of rat liver mitochondria, as measured with the safranine method, is seen during Ca2+ uptake. The depolarisation is followed by a slow repolarisation, the rate of which can be increased by the addition of EGTA or phosphate. 2. Plots relating the initial rate of calcium ion (Ca2+) uptake and the decrease in membrane potential (delta psi) to the Ca2+ concentration show a half-maximal change at less than 10 micron Ca2+ and a saturation above 20 micron Ca2+. 3. Plots relating the initial rate of Ca2+ uptake to delta psi are linear. 4. Addition of Ca2+ chelators, nitriloacetate or EGTA, to deenergized mitochondria equilibrated with Ca2+ causes a polarisation of the mitochondrial membrane due to a diffusion potential created by electrogenic Ca2+ efflux. 5. If the extent of the response induced by different nitriloacetate concentrations is plotted against the expected membrane potential a linear plot is obtained up to 70 mV with a slope corresponding to two-times the extent of the response induced by valinomycin in the presence of different potassium ion gradients. This suggests that the Ca2+ ion is transferred across the membrane with one net positive charge in present conditions.  相似文献   

7.
Polyamines Stimulate Mitochondrial Calcium Transport in Rat Brain   总被引:3,自引:1,他引:2  
The effects of the polyamines spermine and spermidine on rat brain mitochondrial calcium transport were examined using a variety of techniques for measuring the kinetics of calcium uptake and the buffering capabilities of isolated mitochondria. Spermine both increased the rate of calcium accumulation and decreased the set-point to which isolated mitochondria buffer free calcium concentration. In the presence of physiological concentrations of sodium and magnesium, spermine lowered the extramitochondrial calcium level to approximately 0.3 microM, a value close to the resting intracellular calcium concentration. The effect of polyamines was concentration dependent, with a half-maximal effect of spermine observed at approximately 0.1-0.4 mM (respiratory substrate dependent), whereas spermidine was approximately 10 times less potent. Calcium transport by hippocampal mitochondria was stimulated markedly more by spermine than was calcium transport by mitochondria isolated from brainstem. The stimulatory effect of spermine was not due to an increase in the transport of respiratory substrates inside the mitochondria nor to an effect on the enzymes using these respiratory substrates. An examination of the effect of spermine on the kinetics of calcium uptake indicated that spermine increased calcium uptake maximally at low calcium concentrations. Beyond that level, the stimulatory effect of spermine decreases, and spermine can even inhibit calcium uptake. These results are in good agreement with previous reports on the effects of polyamines on calcium transport in mitochondria from peripheral tissue. They support the hypothesis that spermine increases the rate of calcium uptake by mitochondria by increasing the affinity of the uniporter for calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
It has been widely reported that the in vivo administration of glucagon to rats results in the stimulation of calcium influx in subsequently isolated liver mitochondria. The mechanism of this effect is investigated through simultaneous measurements of calcium uptake rate and mitochondrial membrane potential. This allows the measurement of the calcium uniporter conductance independent of hormonal effects on electron transport or respiration. Two experimental approaches are used. The first involves measuring the uptake of 40-50 nmol of Ca2+/mg of mitochondrial protein with the calcium dye antipyrylazo III; the second uses 45Ca2+ to follow uptake in the presence of 0.5 to 1.5 microM free calcium, buffered with HEDTA. In both cases a tetraphenyl phosphonium electrode is used to follow membrane potential, and membrane potential is varied using either malonate or butylmalonate in the presence of rotenone. The relative merits of these two approaches are discussed. The conductance of the calcium uniporter is found not to be stimulated by glucagon pretreatment. Also, the relative glucagon stimulation of both calcium influx and membrane potential is found to increase with increasing malonate concentration. These results imply that there is no direct stimulation of calcium uptake into liver mitochondria following glucagon treatment. The results are consistent with a glucagon stimulation of substrate transport, substrate oxidation, or a stimulation of electron transport resulting in an increased membrane potential and secondary stimulation of calcium uptake.  相似文献   

9.
Polarization of the inner membrane is the key factor in maintenance of the physiologically significant cations accumulation, in particular Ca2+, in the mitochondria. It has been well established that mitochondria accumulate calcium through the uniporter, driven by the mitochondrial membrane potential. Nevertheless, it has been shown that depolarized mitochondria also accumulate Ca2+. The aim of this paper is to investigate free Ca level in depolarized myometrium mitochondria. As we have shown previously Ca2+ addition to the incubation medium, that did not contain K-phosphate, ATP and Mg2+, led to inner mitochondrial membrane depolarization. Nevertheless Ca2+ addition to such medium led to the concentration-dependent accumulation of this cation in the matrix. RuR or Mg addition to the incubation medium led to the higher elevation of mitochondrial Ca2+ level in depolarized mitochondria. Mitochondrial Ca2+ level was not affected by 5 microM cyclosporine A. It was suggested that H+/Ca2+ exchanger could provide calcium accumulation in depolarized mitochondria. The elevation of mitochondrial Ca2+ level after addition of Mg2+ and RuR may be due to inhibition of Ca2+- efflux through Ca2+ uniporter.  相似文献   

10.
The administration of dexamethasone to rats markedly diminished the initial rate and maximal extent of substrate-dependent calcium uptake in subsequently isolated liver mitochondria, and enhanced the release of calcium. The apparent Km for calcium transport was not altered by dexamethasone treatment and it ranged from 50 to 80 muM when an EDTA/Ca buffer system was used in the presence of magnesium, and 20 muM when an NTA/Ca buffer system without magnesium was employed. In contrast, when ATP was employed as the energy source, there was no significant difference in initial rate, Km, or the extent of calcium accumulation between mitochondria from control and dexamethasone-treated animals. Although mitochondria from dexamethasone-treated animal showed 15% less cytochrome c oxidase activity/mg of protein, overall respiratory capacity and ATP production from ADP were the same as in control mitochondria. However, mitochondria from dexamethasone-treated animals translocated ATP from inside to outside faster than those from control animals. When the ATP in the medium was depleted by glucose and hexokinase, both types of mitochondria retained essentially all the preloaded calcium until total ATP reached a critical level (7 approximately 5 mumol of ATP/mg of protein). When ATP content fell below this critical level, mitochondria released all the calcium quickly. Dexamethasone treatment increased the susceptibility of mitochondria to the depletion of ATP. These data indicate that the dexamethasone-induced decrease in maximal calcium transport and in calcium retention carrier system per se, but o an altered ability of the mitochondria to regulate intramitochondrial ATP content.  相似文献   

11.
Evidence is emerging that a quasisynaptic local communication facilitates the calcium signaling between endoplasmic reticulum and mitochondria. However, it remains elusive whether the machinery of mitochondrial calcium signaling displays plasticity similar to the synaptic transmission. Here we studied the relationship between inositol 1,4,5-trisphosphate (IP3)-linked cytosolic [Ca2+] ([Ca2+]c) oscillations and the associated rise in mitochondrial matrix [Ca2+] ([Ca2+]m) in RBL-2H3 mast cells. We observed that the second [Ca2+]c spike is often associated with a larger rise in the [Ca2+]m than the first. It would appear that this phenomenon was not due to a change in the driving force for Ca2+ uptake and therefore must be due to an enhanced Ca2+ permeability of the mitochondrial Ca2+ uptake sites (uniporter). To investigate the activation and deactivation kinetics of the uniporter during IP3 receptor-mediated Ca2+ mobilization, we established novel methods. Using these approaches, we demonstrated that the IP3-induced increase in the permeability of the uniporter lasted longer than the Ca2+ signal. The sustained increase in Ca2+ permeability was bidirectional. Furthermore, the addition of Ca2+ during the decay of the IP3 effect evoked a large further increase in the uniporter permeability. Calmodulin inhibitors did not interfere with the IP3-induced initial activation of the uniporter but inhibited the sustained phase. These results suggest that the uniporter displays a calmodulin-mediated facilitation. This plasticity may allow cooperation among sequential IP3 receptor-mediated [Ca2+] transients in the control of calcium signal propagation to the mitochondria.  相似文献   

12.
Rat liver mitochondria were incubated at 30 degrees C with 4 mM ATP in a medium similar in electrolyte composition to that of hepatic cytosol. Under these conditions, a net increase in mitochondrial adenine nucleotides was observed that was dependent on the concentration of free Ca2+ [( Ca2+]) in the incubation medium. At 0.2 microM [Ca2+] or less, there was no demonstrable uptake of adenine nucleotides; at 0.4 microM [Ca2+], or greater, net uptake occurred. The calcium-dependent accumulation of nucleotides by mitochondria required Mg2+ in the incubation medium and was insensitive to carboxyatractyloside. The uptake of adenine nucleotides was enhanced by the addition of antimycin A or antimycin A together with oligomycin. Accumulation of nucleotides appeared to be associated with a small increase in mean mitochondrial volume, but the membrane potential was not affected. No uptake or loss of NAD-NADH by mitochondria was detected. Ruthenium red failed to inhibit the calcium-dependent uptake of adenine nucleotides by the mitochondria, indicating that stimulation of this process by Ca2+ does not involve transport of the cation into mitochondria by the Ca2+ uniporter. Because glucagon acts to elevate cytosolic [Ca2+] from approximately 0.2 microM to 0.6 microM, the same range affecting nucleotide uptake, it is proposed that the increase in mitochondrial adenine nucleotides that follows treatment with glucagon is mediated by the rise in cytosolic [Ca2+] produced by the hormone. This hypothesis was supported by the observation that epinephrine and A23187, agents that raise cytosolic [Ca2+], increased the content of mitochondrial adenine nucleotides in isolated hepatocytes. Furthermore, cells, incubated under calcium-depleting conditions, had a diminished response to glucagon.  相似文献   

13.
The effect of spermine (50-400 microM) on the Ca-transporting system of brain mitochondria was studied. In a medium containing Mg2+ and ATP, spermine facilitates the accumulation of Ca2+ by decreasing Km of the uniporter. Spermine inhibits Na-stimulated Ca2+ efflux; this effect is dependent on the ionic strength of the medium--it is decreased when KCl concentration is increased from 20 to 120 mM. Spermine (200 microM) decreases (by 50%) the steady state concentration of Ca2+ maintained by mitochondria. The importance of spermine as a regulator of Ca2+-transport in brain mitochondria is discussed.  相似文献   

14.
Spermine. A regulator of mitochondrial calcium cycling   总被引:9,自引:0,他引:9  
Steady-state free Ca2+ concentrations have been measured with a Ca2+ electrode using suspensions of isolated rat liver mitochondria or saponin-treated hepatocytes. Mitochondria, when incubated in the presence of Mg2+ and MgATP2-, maintain a steady-state pCa2+ (-log [Ca2+]) of approximately 6.1 (0.8 microM). Addition of spermine lowered this value to a pCa2+ of 6.6 (0.25 microM). Spermine was the most effective polyamine, giving half-maximal effects at 170 microM and maximal effects at 400 microM. With saponin-permeabilized hepatocytes, spermine addition similarly showed that the mitochondria buffered the steady-state medium-free Ca2+ at a level approximating the cytosolic free Ca2+ concentration of intact hepatocytes. The initial rate of Ca2+ uptake by the mitochondrial Ca2+ uniporter was investigated using Ca2+-depleted mitochondria incubated in the presence of succinate and 0.3 mM free Mg2+. Under control conditions, Ca2+ uptake was not observed at free Ca2+ concentrations below 0.5 microM. Spermine (350 microM) increased the rate of Ca2+ uptake at all Ca2+ concentrations below 4.5 microM, but at higher Ca2+ concentrations, it was inhibitory. Spermine also affected mitochondrial Ca2+ efflux by decreasing the apparent Km from 16 to 3.8 nmol of Ca2+/mg of mitochondrial protein with no change of Vmax. Experiments with 45Ca2+ confirmed that spermine increased mitochondrial Ca2+ cycling at 0.2 microM free Ca2+. Hepatic spermine contents are reported to be about 1 mumol/g, wet weight, suggesting that this polyamine may have an important physiological role in intracellular calcium homeostasis.  相似文献   

15.
When rat liver mitochondria are allowed to accumulate Ca2+, treated with ruthenium red to inhibit reverse activity of the Ca2+ uniporter, and then treated with an uncoupler, they release Ca2+ and endogenous Mg2+ and undergo large amplitude swelling with ultrastructural expansion of the matrix space. These effects are not produced by Ca2+ plus uncoupler alone. Like other "Ca2+-releasing agents" (i.e. N-ethylmaleimide, t-butylhydroperoxide, oxalacetate, etc.), the development of nonspecific permeability produced by ruthenium red plus uncoupler requires accumulated Ca2+ specifically and is antagonized by inhibitors of phospholipase A2. The permeability responses are also antagonized by ionophore A23187, indicating that a rapid pathway for Ca2+ efflux from deenergized mitochondria is necessary to prevent the development of nonspecific permeability. EGTA can be substituted for ruthenium red to produce the nonspecific permeability change in Ca2+-loaded, uncoupler-treated mitochondria. The permeability responses to EGTA plus uncoupler again require accumulated Ca2+ specifically and are antagonized by inhibitors of phospholipase A2 and by ionophore A23187. The equivalent effects of ruthenium red and EGTA on uncoupled, Ca2+-containing mitochondria indicate that reducing the extramitochondrial Ca2+ concentration to the subnanomolar range produces inhibition of reverse uniport activity. It is proposed that inhibition reflect regulation of the uniporter by a Ca2+ binding site which is available from the cytoplasmic side of the inner membrane. EDTA cannot substitute for EGTA to induce nonspecific permeability in Ca2+-loaded, uncoupled mitochondria. Furthermore, EDTA inhibits the response to EGTA with an I50 value of approximately 10 microM. These data suggest that the uniporter regulatory site also binds Mg2+. The data suggest further that Mg2+ binding to the regulatory site is necessary to inhibit reverse uniport activity, even when the site is not occupied by Ca2+.  相似文献   

16.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

17.
The activity of the calcium uniporter of rat liver mitochondria, allosterically enhanced by a pulse of calcium, decreases with time and in dependence on extramitochondrial Ca2+ concentration. Therefore, the initial velocity of calcium uptake by mitochondria depends on the extramitochondrial Ca2+ concentration prior to uptake. The allosteric activation by calcium and the hysteretic behaviour of the uniporter are the reasons why the course of calcium distribution between mitochondria and extramitochondrial space is determined for many minutes by the initial extramitochondrial Ca2+ concentration. This dependence and also the independence on the intramitochondrial calcium content are shown in an in vitro system, simulating conditions prevailing in vivo during the action of alpha-adrenergic agonists or vasoactive peptides on liver and during the early phase of carbon tetrachloride intoxication.  相似文献   

18.
The ability of mitochondria to take up Ca(2+) was discovered 50 years ago. This calcium uptake, through a mitochondrial calcium uniporter (MCU), is important not only for the regulation of cellular ATP concentration but also for more complex pathways such as shaping Ca(2+) signals and the activation of programmed cell death. The molecular nature of the uniporter remained unknown for decades. By a comparative study of mitochondrial protein profiles of organisms lacking or possessing MCU, such as yeast in the former case and vertebrates and trypanosomes in the latter, two groups recently found the protein that possesses all the characteristics of the MCU. These results add another success story to the already substantial contributions of trypanosomes to mammalian biochemistry.  相似文献   

19.
M Favaron  P Bernardi 《FEBS letters》1985,183(2):260-264
This paper analyzes the kinetics of the Ca2+ uniporter of mitochondria from rat heart, kidney and liver operating in a range of Ca2+ concentrations near the steady-state value (1-4 microM). Heart mitochondria exhibit the lowest activity, and physiological Mg2+ concentrations inhibit the mitochondrial Ca2+ uniporter by approx. 50% in heart and kidney, and by 20% in liver. At physiological Ca2+ and Mg2+ concentrations the external free Ca2+ maintained by respiring mitochondria in vitro is higher in heart and kidney with respect to liver mitochondria. This behaviour could represent an adaptation of different mitochondria to their specific intracellular environment.  相似文献   

20.
Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport   总被引:2,自引:0,他引:2  
The effects of the polyamine spermine on the regulation of Ca2+ transport by subcellular organelles from rat liver, heart, and brain were investigated using ion-sensitive minielectrodes and a 45Ca2+ tracer method. Spermine stimulated Ca2+ uptake by mitochondria but not by microsomes. In the presence of spermine, isolated mitochondria could maintain a free extramitochondrial Ca2+ concentration of 0.3-0.2 microM. Stimulation of the initial rates of Ca2+ uptake and 45Ca2+ cycling of mitochondria by spermine shows that this was accomplished through a decrease of the apparent Km for Ca2+ uptake by the Ca2+ uniporter. The half maximally effective concentration of spermine (50 microM) was in the range of physiological concentrations of this polyamine in the cell. Spermidine was five times less effective. Putrescine was ineffective. The stimulation of mitochondrial Ca2+ uptake by spermine was inhibited by Mg2+ in a concentration-dependent manner. However, the diminished contribution of the mitochondria to the regulation of the free extraorganellar Ca2+ concentration could mostly be compensated for by microsomal Ca2+ uptake. Spermine also reversed ruthenium red-induced Ca2+ efflux from mitochondria. It is concluded that spermine is an activator of the mitochondrial Ca2+ uniporter and Mg2+ an antagonist. By this mechanism, the polyamines can confer to the mitochondria an important role in the regulation of the free cytoplasmic Ca2+ concentration in the cell and of the free Ca2+ concentration in the mitochondrial matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号