首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we explored the possible application of MAT-1, which has been established as a monoclonal antibody against human tyrosinase, for detection of mouse tyrosinase. The MAT-1 reacted with B16 mouse melanoma cells, but not with tyrosinase-negative NIH-3T3 mouse fibroblasts. In western blot analysis of the large granule fraction (LGF) of B16 cells, MAT-1 detected a single protein of 80 kDa, whose size was close to that of human tyrosinase detected with MAT-1 in extracts of human melanocytes. Furthermore, the 80 kDa band that was detected with MAT-1 in the LGF of B16 cells was also detected by DOPA reaction. In order to confirm that the protein detected with MAT-1 is tyrosinase, a transient expression assay was carried out. When mouse tyrosinase or mouse tyrosinase-related protein 1, which shares high homology with human tyrosinase, was transiently expressed in tyrosinase-negative K1735 mouse melanoma cells by cDNA transfection, MAT-1 reacted only with the cells expressing mouse tyrosinase. These results indicate that MAT-1 specifically reacts with mouse tyrosinase.  相似文献   

2.
3.
In order to better understand the cascade of melanogenic events in melanocytes, this report has introduced our two recent approaches for the expression of melanogenesis/or melanosome-associated genes and encoded proteins in melanocytes (melanoma cells) after repeated exposure to UV -B and after cotransfection of two human genes, i.e., tyrosinase and tyrosinase-related protein-1 (TRP-1). Repeated exposure of UV B (2.5–5.0 mJ/cm2) caused not only upregulation of tyrosinase and TRP-1 genes but also coordinated increase in the gene and protein synthesis expression of Lamp-1 (lysosome-associated membrane protein-1). When COS-7 kidney cells and amelanotic melanoma (C32 and SKMEL-24) and melanotic melanoma (G361 and SK-MEL-23) cells were exposed to cotransfection of human tyrosinase and TRP-1 cDNAs, there was also an increased expression of Lamp-1 mRNA and protein along with tyrosinase activation and new melanin synthesis. Importantly, single transfectants of human tyrosinase cDNA revealed marked cellular degeneration, whereas this degeneration was not seen in single transfectants of TRP-1 cDNA or cotransfectants of human tyrosinase and TRP-1 cDNAs, indicating that TRP-1 prevented, along with Lamp-1, programmed death of melanocytes after transfection of tyrosinase gene. The coordinated expression of TRP-1 and Lamp-1 was further confirmed by antisense oligodeoxynucleotide hybridization experiment against Lamp-1 gene, showing the decreased expression of TRP-1 as identified by three different types of anti-TRP-1 monoclonal antibodies. We propose therefore that human tyrosinase and TRP-l, when activated or expressed together, will coordinate to upregulate the mRNA expression and protein synthesis of Lamp-1. The Lamp-1 molecules will, in turn, cover the inner surface of melanosomal membrane, together with TRP-1 molecules, thus protecting the melanosomal membrane from toxic melanin intermediates generated during melanogenesis in the presence of active tyrosinase. In contrast, the expression of other lysosome-related proteins, e.g., β-galactosidase and CD63 is not stimulated in new melanogenesis.  相似文献   

4.
G Müller  S Ruppert  E Schmid    G Schütz 《The EMBO journal》1988,7(9):2723-2730
  相似文献   

5.
Cloning and expression of cDNA encoding mouse tyrosinase.   总被引:26,自引:4,他引:26       下载免费PDF全文
We have isolated a pigment cell-specific cDNA clone from a B16 mouse melanoma cDNA library by differential hybridization. The mRNA of isolated cDNA is highly expressed in B16 melanoma cells and in black mouse (C57BL/6) skin, but is not detectable in mouse neuroblastoma cells nor in K1735 mouse amelanotic melanoma cells. The protein sequence deduced from the nucleotide sequence of the cloned cDNA shows significant similarity to the entire region of Neurospora tyrosinase. To know the identity of cDNA, we transfected K1735 amelanotic melanoma and COS-7 cells with the cDNA carried in a simian virus 40 vector (pKCRH2). We confirmed that the isolated cDNA encodes mouse tyrosinase by immunofluorescence staining of transfected cells using two different anti-T4-tyrosinase monoclonal antibodies. Tyrosinase is composed of 513 amino acids with a molecular weight of 57,872 excluding a hydrophobic signal peptide of 24 amino acids.  相似文献   

6.
In vertebrates, melanin production is restricted to pigment cells. This cell type-specific melanogenesis is considered to involve cell type-specific expression of the tyrosinase gene. Recently, there have been several reports that sequences in the 5’ flanking region of the mouse tyrosinase gene are responsible for cell type-specific expression of the transgene in mice. As the first step in the study of the evolution of the regulatory mechanisms for tyrosinase gene function in vertebrates, we constructed a fused gene, hg-Tyrs-J which includes a 1.0-kb 5’ flanking sequence of the human tyrosinase gene fused with mouse tyrosinase cDNA. By introducing the fused gene into fertilized eggs of albino mice, we obtained two mice that exhibited pigmentation in the skin and eyes and established a transgenic line from one of them. Further analyses revealed that the transgene was expressed cell type-specifically in these transgenic mice. We conclude, therefore, that the 1.0 kb 5’ upstream region of the human tyrosinase gene contains conserved cis-elements essential for cell type-specific expression of the tyrosinase genes in mice and humans. Results of our study may provide a clue to elucidate the evolutionary process of regulatory mechanisms of the tyrosinase gene.  相似文献   

7.
Isolation and characterization of variant cDNAs encoding mouse tyrosinase   总被引:6,自引:0,他引:6  
Two different cDNA clones encoding mouse tyrosinase (monophenol oxygenase, E.C. 1.14.18.1) were isolated from B16 melanoma cells, and their primary structure was determined. One of the cDNAs consists of 3309 nucleotides with an open reading frame coding for a peptide of 533 amino acids. The other cDNA is approximately 1600 nucleotides long, with a shorter 3'-untranslated region and a deduced in-frame deletion of 77 amino acid residues with respect to the former clone. Neither of these clones is structurally identical to other described mouse tyrosinase cDNAs (1-3). RNA blotting analysis demonstrates that multiple tyrosinase mRNA species are not only present in B16 melanoma, but also in normal skin melanocytes.  相似文献   

8.
9.
10.
A cDNA encoding tyrosinase of Rana nigromaculata was introduced into cultured, tyrosinase-negative amelanotic melanophores of R. brevipoda by a calcium phosphate precipitation method. Within a few days following transfection, dark pigmentation became visible in a small number of cells. Light microscopic observation revealed that the morphology of these transformed cells was comparable to that of normal melanophores in culture, and their proliferative activity was lower than that of amelanotic cells. Ultrastructural examination verified that amelanotic melanophores possessed a relatively small number of premelanosomes while the transformants contained numerous melanosomes at various stages of pigment deposition. The result indicated that tyrosinase cDNA of R. nigromaculata was expressed in amelanotic melanophores of R. brevipoda inducing the maturation of premelanosomes. It was also suggested that the expression of transfected tyrosinase cDNA had promoted differentiation of the amelanotic cells into fully developed melanophores.  相似文献   

11.
The biosynthesis of dopamine (DA) in catecholaminergic neurons is regulated by tyrosine hydroxylase, which converts tyrosine into 3, 4-dihydroxyphenylalanine (L-DOPA). In melanocytes, tyrosinase catalyzes both the hydroxylation of tyrosine and the consequent oxidation of L-DOPA to form melanin. Although it has been demonstrated that tyrosinase is also expressed in the brain, the physiological role of tyrosinase in the brain is still obscure. In this study, to investigate the role of tyrosinase in catecholaminergic neuronal cells, we examined the effects of tyrosinase inhibition on the viability of CATH.a and SH-SY5Y cells using tyrosinase inhibitors-specifically, phenylthiourea (PTU) and 5-hydroxyindole (5-HI)-and the transfection of antisense tyrosinase cDNA. Both inhibitors significantly reduced the cell viability of CATH.a cells in a dose-dependent manner. PTU also specifically enhanced DA-induced cell death, but 5-HI did not. This discrepancy in cell death is probably due to the inhibitors' different mechanism of action: 5-HI inhibits the hydroxylation of tyrosine as a competitor for the substrate to induce cell death that may be due to depletion of DA, whereas PTU mainly inhibits the enzymatic oxidation of L-DOPA and DA rather than tyrosine hydroxylation to increase consequently autooxidation of DA. Indeed, the intracellular DA content in CATH.a cells was enhanced by PTU exposure. In contrast, PTU showed no enhancing effects on DA-induced cell death of SH-SY5Y cells, which express little tyrosinase. Furthermore, transfection with antisense tyrosinase cDNA into CATH.a cells dramatically reduced cell viability and significantly enhanced DA-induced cell death. These results suggest that tyrosinase controls the intracellular DA content by biosynthesis or enzymatic oxidation of DA, and the dysfunction of this activity induces cell death by elevation of intracellular DA level and consequent gradual autooxidation of DA to generate reactive oxygen species.  相似文献   

12.
Tyrosinase-related protein (TRP)-1 is one of the most abundant melanosomal glycoproteins involved in melanogenesis. This report summarizes our recent research efforts related to the biological role and biosynthesis of TRP-1 and its transport from TGN (trans-Golgi network) to the stage I melanosome. Our UV irradiation and tyrosinase and TRP-1 cDNA co-transfection studies indicated that human TRP-1 is involved in not only melanogenesis but also prevention of melanocyte death, which may occur during biosynthesis of melanin pigment in the presence of tyrosinase. Furthermore, a coordinated gene interaction was indicated between tyrosinase and TRP-1, resulting in upregulation of mRNA and protein expression of LAMP (lysosome-associated membrane protein)-1 that would directly prevent the tyrosinase-mediated programmed cell death of melanocytes. Similar to tyrosinase, however, TRP-1 appears to require a molecular chaperone, calnexin, which we have cloned recently. Our cDNA transfection study of tyrosinase with calnexin showed clearly the necessity of calnexin in order to have efficient, functional activity of melanosomal glycoprotein, especially tyrosinase. Once glycosylation is completed, TRP-1 will be transported from TGN to the stage I melanosome. At this stage, TRP-1 will have its own target signal, in particular, tyrosine-rich leucine residues in cytoplasmic tail. Our TRP-1 cDNA transfection and immunoelectron microscopy study shows that TRP-1 will be transported through small vesicles, probably non-clathrin-coated type, to large vacuoles, identical to the MPR (mannose-6-phosphate receptor)-positive, late endosomes. In this transport process, a low molecular weight G-protein, rab-7, was isolated from the purified melanosomal protein on 2D-PAGE and identified by subsequent sequencing and PCR amplification. Confocal microscopy with double immunostaining and immunoelectron microscopy confirmed the co-localization of rab-7 and TRP-1 in the melanosomes with early stages of maturation (I-III). Furthermore, this process will also be regulated by phosphatidylinositol 3-kinase (PI-3 kinase).  相似文献   

13.
14.
The enzyme tyrosinase (monophenol,L-dopa:oxygen oxidoreductase; EC 1.14.18.1) catalyzes the first two steps in the conversion of tyrosine to melanin, the major pigment found in melanocytes. Some forms of oculocutaneous albinism, characterized by the absence of melanin in skin and eyes and by a deficiency of tyrosinase activity, may result from mutations in the tyrosinase structural gene. A recently isolated human tyrosinase cDNA was used to map the human tyrosinase locus (TYR) to chromosome 11, region q14----q21, by Southern blot analysis of somatic cell hybrid DNA and by in situ chromosomal hybridization. A second site of tyrosinase-related sequences was detected on the short arm of chromosome 11 near the centromere (p11.2----cen). Furthermore, we have confirmed the localization of the tyrosinase gene in the mouse at or near the c locus on chromosome 7. Comparison of the genetic maps of human chromosome 11 and mouse chromosome 7 leads to hypotheses regarding the evolution of human chromosome 11.  相似文献   

15.
Molecular basis of mouse Himalayan mutation   总被引:9,自引:0,他引:9  
Many different coat-colors result from the c-locus mutation in the mouse. One of these interesting mutants is a Himalayan, which produces temperature sensitive tyrosinase, and the basis of this sensitivity remains unknown. We cultured Himalayan mouse melanocytes from the skin and constructed a cDNA library; then, we isolated the Himalayan tyrosinase cDNAs and determined the nucleotide sequence. The tyrosinase gene in the Himalayan mouse contains an A----G change at nucleotide 1259 that alters a histidine residue to an arginine residue at amino acid 420. This histidine residue and the surrounding amino acids are conserved in their evolution from mouse to human. Interestingly, the residue with its surrounding eight amino acids are aligned between mouse b-protein and human tyrosinase. These results indicate the possibility that the altered residue at amino acid 420 of mouse tyrosinase may be important in stabilization of the tyrosinase molecule, or in interaction with other molecules, such as tyrosinase inhibitors.  相似文献   

16.
17.
Very little is known about the genes involved in the regulation of avian skin and feather pigmentation. In mammals, two gene families have been identified as being important for the regulation of melanin biosynthesis. To isolate the avian equivalents of these families, we have generated an embryonic chick melanocyte cDNA library. Neural crest cells from 500 black chick embryos were cultured under conditions supportive of melanocyte differentiation and proliferation. A cDNA library was constructed and screened with a mouse tyrosinase cDNA probe. Nineteen clones were obtained, seven of which cross-hybridized to a mouse tyrosinase cDNA on Southern blots. The longest of these clones, B8.3 (1.9 kb), was sequenced and found to share 99.7% nucleotide and 99.8% amino acid sequence homology to a reported chick tyrosinase cDNA. Both Northern blot analysis andin situhybridization demonstrated that clone B8.3 was expressed in the retinal pigment epithelium of chick embryos. Our results suggest therefore that the cDNA library described here may allow the cloning of novel melanogenic genes.  相似文献   

18.
Patients with Hermansky-Pudlak syndrome type 2 (HPS-2) have mutations in the beta 3A subunit of adaptor complex-3 (AP-3) and functional deficiency of this complex. AP-3 serves as a coat protein in the formation of new vesicles, including, apparently, the platelet's dense body and the melanocyte's melanosome. We used HPS-2 melanocytes in culture to determine the role of AP-3 in the trafficking of the melanogenic proteins tyrosinase and tyrosinase-related protein-1 (TRP-1). TRP-1 displayed a typical melanosomal pattern in both normal and HPS-2 melanocytes. In contrast, tyrosinase exhibited a melanosomal (i.e., perinuclear and dendritic) pattern in normal cells but only a perinuclear pattern in the HPS-2 melanocytes. In addition, tyrosinase exhibited a normal pattern of expression in HPS-2 melanocytes transfected with a cDNA encoding the beta 3A subunit of the AP-3 complex. This suggests a role for AP-3 in the normal trafficking of tyrosinase to premelanosomes, consistent with the presence of a dileucine recognition signal in the C-terminal portion of the tyrosinase molecule. In the AP-3-deficient cells, tyrosinase was also present in structures resembling late endosomes or multivesicular bodies; these vesicles contained exvaginations devoid of tyrosinase. This suggests that, under normal circumstances, AP-3 may act on multivesicular bodies to form tyrosinase-containing vesicles destined to fuse with premelanosomes. Finally, our studies demonstrate that tyrosinase and TRP-1 use different mechanisms to reach their premelanosomal destination.  相似文献   

19.
20.
Mutational mapping of the catalytic activities of human tyrosinase.   总被引:7,自引:0,他引:7  
Tyrosinase (EC 1.14.18.1) is a copper-containing metalloglycoprotein that catalyzes several steps in the melanin pigment biosynthetic pathway; the hydroxylation of tyrosine to L-3,4-dihydroxyphenylalanine (dopa) and the subsequent oxidation of dopa to dopaquinone. It has been proposed that tyrosinase is also able to oxidize 5,6-dihydroxyindole (DHI), a later product in the melanogenic pathway, to indole-5,6-quinone. Tyrosinase enzymatic activity is deficient in patients with classic type I oculocutaneous albinism (OCA), and more than 50 distinct mutations have now been identified in the tyrosinase genes of such patients. To determine the effects of the various tyrosinase gene mutations on the catalytic activities of the enzyme, we carried out site-directed mutagenesis of human tyrosinase cDNA, transiently expressed the mutant cDNAs in transfected HeLa cells, and assayed the resultant encoded proteins for tyrosine hydroxylase, dopa, and DHI oxidase activities, and resulting melanin production. The tyrosine hydroxylase activity of normal tyrosinase is thermostable, whereas its dopa oxidase and DHI oxidase activities are temperature-sensitive. Although all amino acid substitutions tested generally affected the dopa oxidase and DHI oxidase activities in parallel, several exerted distinctly different effects on the tyrosine hydroxylase activities. Together, these results confirm the DHI oxidase activity of mammalian tyrosinase and suggest that the dopa oxidase and DHI oxidase activities of tyrosinase share a common catalytic site, whereas the tyrosine hydroxylase catalytic site is at least partially distinct in the tyrosinase polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号