首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human polynucleotide kinase (hPNK) is required for processing and rejoining DNA strand break termini. The 5'-DNA kinase and 3'-phosphatase activities of hPNK can be stimulated by the "scaffold" protein XRCC1, but the mechanism remains to be fully elucidated. Using a variety of fluorescence techniques, we examined the interaction of hPNK with XRCC1 and substrates that model DNA single-strand breaks. hPNK binding to substrates with 5'-OH termini was only approximately 5-fold tighter than that to identical DNA molecules with 5'-phosphate termini, suggesting that hPNK remains bound to the product of its enzymatic activity. The presence of XRCC1 did not influence the binding of hPNK to substrates with 5'-OH termini, but sharply reduced the interaction of hPNK with DNA bearing a 5'-phosphate terminus. These data, together with kinetic data obtained at limiting enzyme concentration, indicate a dual function for the interaction of XRCC1 with hPNK. First, XRCC1 enhances the capacity of hPNK to discriminate between strand breaks with 5'-OH termini and those with 5'-phosphate termini; and second, XRCC1 stimulates hPNK activity by displacing hPNK from the phosphorylated DNA product.  相似文献   

2.
The functional involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in the repair of DNA single- and double-strand breaks, DNA base damage, and related repair substrate intermediates remains unclear. Using an in vitro DNA repair assay and cell extracts derived from PARP-1 deficient or wild-type murine embryonic fibroblasts, we investigated the DNA synthesis and ligation steps associated with the rejoining of DNA single-strand interruptions containing 3'-OH, and either 5'-OH or 5'-P termini. Complete repair leading to DNA rejoining was similar between PARP-1 deficient cells and wild-type controls and poly(ADP-ribose) synthesis was, as expected, greatly reduced in PARP-1 deficient cell extracts. The incorporation of [32P]dCMP into repaired DNA at the site of a lesion was reduced two-three-fold in PARP-1 deficient cell extracts, demonstrating a decrease in repair patch size. Addition of purified PARP-1 to levels approximating those present in wild-type extracts did not stimulate DNA repair synthesis. We conclude that PARP-1 is not required for the efficient processing and rejoining of single-strand interruptions with defined 3'-OH and 5'-OH or 5'-P termini. Decreased DNA repair synthesis observed in PARP-1 deficient cell extracts is associated with reduced cellular expression of several factors required for long-patch base excision repair (BER), including FEN-1 and DNA ligase I.  相似文献   

3.
A putative role for mammalian polynucleotide kinases that possess both 5'-phosphotransferase and 3'-phosphatase activity is the restoration of DNA strand breaks with 5'-hydroxyl termini or 3'-phosphate termini, or both, to a form that supports the subsequent action of DNA repair polymerases and DNA ligases, i.e. 5'-phosphate and 3'-hydroxyl termini. To further assess this possibility, we compared the activity of the 3'-phosphatase of purified calf thymus polynucleotide kinase towards a variety of substrates. The rate of removal of 3'-phosphate groups from nicked or short (1 nt) gapped sites in double-stranded DNA was observed to be similar to that of 3'-phosphate groups from single-stranded substrates. Thus this activity of polynucleotide kinase does not appear to be influenced by steric accessibility of the phosphate group. We subsequently demonstrated that the concerted reactions of polynucleotide kinase and purified human DNA ligase I could efficiently repair DNA nicks possessing 3'-phosphate and 5'-hydroxyl termini, and similarly the combination of these two enzymes together with purified rat DNA polymerase beta could seal a strand break with a 1 nt gap. With a substrate containing a nick bounded by 3'- and 5'-OH termini, the rate of gap filling by polymerase beta was significantly enhanced in the presence of polynucleotide kinase and ATP, indicating the positive influence of 5'-phosphorylation. The reaction was further enhanced by addition of DNA ligase I to the reaction mixture. This is due, at least in part, to an enhancement by DNA ligase I of the rate of 5'-phosphorylation catalyzed by polynucleotide kinase.  相似文献   

4.
The biochemical characteristics of the formation and disappearance of intercalator-induced DNA double-strand breaks (DSB) were studied in nuclei from mouse leukemia L1210 cells by using filter elution methodology [Bradley, M. O., & Kohn, K.W. (1979) Nucleic Acids Res. 7, 793-804]. The three intercalators used were 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), 5-iminodaunorubicin (5-ID), and ellipticine. These compounds differ in that they produced predominantly DNA single-strand breaks (SSB) (m-AMSA) or predominantly DNA double-strand breaks (ellipticine) or a mixture of both SSB and DSB (5-ID) in whole cells. In isolated nuclei, each intercalator produced DSB at a frequency comparable to that which is produced in whole cells. Moreover, these DNA breaks reversed within 30 min after drug removal. It thus appeared that neither ATP nor other nucleotides were necessary for intercalator-dependent DNA nicking-closing reactions. The formation of the intercalator-induced DSB was reduced at ice temperature. Break formation was also reduced in the absence of magnesium, at a pH above 6.4 and at NaCl concentrations above 200 mM. In the presence of ATP and ATP analogues, the intercalator-induced cleavage was enhanced. These results suggest that the intercalator-induced DSB are enzymatically mediated and that the enzymes involved in these reactions can catalyze DNA double-strand cleavage and rejoining in the absence of ATP, although the occupancy of an ATP binding site might convert the enzyme to a form more reactive to intercalators. Three inhibitors of DNA topoisomerase II--novobiocin, nalidixic acid, and norfloxacin--reduced the formation of DNA strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Pancreatic DNAase cleavage sites in nuclei   总被引:18,自引:0,他引:18  
B Sollner-Webb  G Felsenfeld 《Cell》1977,10(3):537-547
The DNA of nuclei is cleaved by a variety of nucleases in such a way that the cuts on a given strand are always separated by an integral multiple of 10 nucleotides. However, the spacing between cutting sites on opposite strands is not known for any nuclease. In this paper, we describe the determination of the spacing, or stagger, between cuts on opposite strands produced by the action of pancreatic DNAase (DNAase I) on nuclei. When nuclei are digested with DNAase I and the resultant DNA is analyzed by gel electrophoresis without prior denaturation, a complex pattern of bands is observed. A method which gives better than 90% recovery of DNA from polyacrylamide gels was used to isolate the individual fractions corresponding to these bands. The structure of the fractions was then determined using single-strand-specific nuclease to digest single-stranded "tails" and using DNA polymerases to extend recessed 3'-OH termini of partially duplex regions. Our results show that each component consists of a double-stranded region terminating in single-stranded tails at both ends. Although both chains of every duplex are 10-n nucleotides long (n integer), the chains are never completely paired. The experiments with DNA polymerase show an abundance of structures in which the 3'-OH termini of these duplexes are recessed by 8 nucleotides, and by inference, there must be structures with 5'-P termini recessed by 2 or 12 nucleotides. Thus DNAase I acts on nuclei to produce DNA with staggered cuts on opposite strands, separated by (10-n + 8) and (10-n + 2) base pairs (with 5'-P and 3'-OH termini extending, respectively). Two classes of models of DNA folding in the nucleosome have been proposed by other investigators to account for the presence of DNAase I cleavage sites at 10-n intervals along each DNA chain. One class of models leads to the prediction that cuts should either be unstaggered or separated by 10 nucleotides, while the other class is consistent with staggers of 6 and 4 nucleotides. Neither prediction is verified by our data; however, all these models may be made consistent with the results by assuming that the enzyme's site of recognition on nucleosomal DNA is not the same as its site of cleavage.  相似文献   

6.
K C Gale  N Osheroff 《Biochemistry》1990,29(41):9538-9545
Following its cleavage of double-stranded DNA, topoisomerase II is covalently bound to the 5'-termini of both nucleic acid strands. However, in order to isolate this enzyme-cleaved DNA complex in the presence of magnesium (the enzyme's physiological divalent cation), reactions must be terminated by the addition of a strong protein denaturant such as sodium dodecyl sulfate (SDS). Because of the requirement for a protein denaturant, it is unclear whether DNA cleavage in this in vitro system takes place prior to or is induced by the addition of SDS. To distinguish between these two possibilities, experiments were carried out to determine whether topoisomerase II bound DNA contains 3'-OH termini prior to denaturation. This was accomplished by using circular single-stranded phi X174 DNA as a model substrate for the enzyme. As found previously for topoisomerase II mediated cleavage of double-stranded DNA, the enzyme was covalently linked to the 5'-termini of cleaved phi X174 molecules. Moreover, optimal reaction pH as well as optimal salt and magnesium concentrations was similar for the two substrates. In contrast to results with double-stranded molecules, single-stranded DNA cleavage increased with time, was not salt reversible, and did not require the presence of SDS. Furthermore, cleavage products generated in the absence of protein denaturant could be labeled at their 3'-OH DNA termini by incubation with terminal deoxynucleotidyltransferase and [alpha-32P]ddATP. Finally, cleaved phi X174 molecules could be joined to a radioactively labeled double-stranded oligonucleotide by a topoisomerase II mediated intermolecular ligation reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The repair of deoxyribonucleic acid (DNA) in germinating spores was studied in comparison with that in vegetative cells. Radiation-induced single-strand breaks in the DNA of spores and of vegetative cells of Bacillus subtilis were rejoined during postirradiation incubation. The molecular weight of single-stranded DNA was restored to the level of nonirradiated cells. The rate of the rejoining of DNA strand breaks in irradiated spores was essentially equal to that in irradiated vegetative cells. The rejoining in spores germinating in nutrient medium occurred in the absence of detectable DNA synthesis. In this state, normal DNA synthesis was not initiated. Very little DNA degradation occurred during the rejoining process. On the other hand, in vegetative cells the rejoining process was accompanied by a relatively large amount of DNA synthesis and DNA degradation in nutrient medium. The rejoining occurred in phosphate buffer in vegetative cells but not in spores in which germination was not induced. Chloramphenicol did not interfere with the rejoining process in either germinating spores or vegetative cells, indicating that the rejoining takes place in the absence of de novo synthesis of repair enzyme. In the radiation-sensitive strain uvs-80, the capacity for rejoining radiation-induced strand breaks was reduced both in spores and in vegetative cells, suggesting that the rejoining mechanism of germinating spores is not specific to the germination process.  相似文献   

8.
The time scale for rejoining of radiation-induced deoxyribonucleic acid (DNA) single-strand breaks was measured in the presence and absence of oxygen. The involvement of DNA polymerase I in this repair process was studied. Formation and rejoining of DNA strand breaks were measured in lambda DNA infecting lysogenic pol(+) and polA1 strains of Escherichia coli irradiated by 4 MeV electrons under identical conditions. Irradiation and transfer to alkaline detergent could be completed in less than 180 ms. The initial yields of DNA strand breaks were identical in pol(+) and polA1 host cells and four- to fivefold higher in the presence of oxygen than in nitrogen anoxia. Evidence for the existence of a very fast repair process, independent of DNA polymerase I, was not found, since no rejoining of radiation-induced DNA strand breaks was observed during incubation from 45 ms to 3 s. In pol(+) host cells most of the strand breaks produced in the presence of oxygen were rejoined within the first 30 to 40 s of incubation, whereas no rejoining could be detected within the same period of time in anoxic cells. Since no rejoining of broken lambda DNA molecules was observed in polA1 host cells, it is concluded that the synthetase activity of DNA polymerase I is involved in the rejoining of DNA breaks induced by radiation in the presence of oxygen.  相似文献   

9.
Saccharomyces cerevisiae RAD50 and MRE11 genes are required for the nucleolytic processing of DNA double-strand breaks. We have overexpressed Rad50 and Mre11 in yeast cells and purified them to near homogeneity. Consistent with the genetic data, we show that the purified Rad50 and Mre11 proteins form a stable complex. In the Rad50.Mre11 complex, the protein components exist in equimolar amounts. Mre11 has a 3' to 5' exonuclease activity that results in the release of mononucleotides. The addition of Rad50 does not significantly alter the exonucleolytic function of Mre11. Using homopolymeric oligonucleotide-based substrates, we show that the exonuclease activity of Mre11 and Rad50.Mre11 is enhanced for substrates with duplex DNA ends. We have examined the endonucleolytic function of Mre11 on defined, radiolabeled hairpin structures that also contain 3' and 5' single-stranded DNA overhangs. Mre11 is capable of cleaving hairpins and the 3' single-stranded DNA tail. These endonuclease activities of Mre11 are enhanced markedly by Rad50 but only in the presence of ATP. Based on these results, we speculate that the Mre11 nuclease complex may mediate the nucleolytic digestion of the 5' strand at secondary structures formed upon DNA strand separation.  相似文献   

10.
11.
There is evidence suggesting that radiosensitization induced in mammalian cells by substitution in the DNA of thymidine with BrdU has a component that relies on inhibition of repair and/or fixation of radiation damage. Here, experiments designed to study the mechanism of this phenomenon are described. The effect of BrdU incorporation into DNA was studied on cellular repair capability, rejoining of interphase chromosome breaks, as well as induction and rejoining of DNA double- and single-stranded breaks (DSBs and SSBs) in plateau-phase CHO cells exposed to X rays. Repair of potentially lethal damage (PLD), as measured by delayed plating of plateau-phase cells, was used to assay cellular repair capacity. Rejoining of interphase chromosome breaks was assayed by means of premature chromosome condensation (PCC); induction and rejoining of DNA DSBs were assayed by pulsed-field gel electrophoresis and induction and rejoining of DNA SSBs by DNA unwinding. A decrease was observed in the rate of repair of PLD in cells grown in the presence of BrdU, the magnitude of which depended upon the degree of thymidine replacement. The relative increase in survival caused by PLD repair was larger in cells substituted with BrdU and led to a partial loss of the radiosensitizing effect compared to cells tested immediately after irradiation. A decrease was also observed in the rate of rejoining of interphase chromosome breaks as well as in the rate of rejoining of the slow component of DNA DSBs in cells substituted with BrdU. The time constants measured for the rejoining of the slow component of DNA DSBs and of interphase chromosome breaks were similar both in the presence and in the absence of BrdU, suggesting a correlation between this subset of DNA lesions and interphase chromosome breaks. It is proposed that a larger proportion of radiation-induced potentially lethal lesions becomes lethal in cells grown in the presence of BrdU. Potentially lethal lesions are fixed via interaction with processes associated with cell cycle progression in cells plated immediately after irradiation, but can be partly repaired in cells kept in the plateau-phase. It is hypothesized that fixation of PLD is caused by alterations in chromatin conformation that occur during normal progression of cells throughout the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Expression of the human T-cell leukemia virus type I (HTLV-I) Tax oncoprotein rapidly engenders DNA damage as reflected in a significant increase of micronuclei (MN) in cells. To understand better this phenomenon, we have investigated the DNA content of MN induced by Tax. Using an approach that we termed FISHI, fluorescent in situ hybridization and incorporation, we attempted to characterize MN with centric or acentric DNA fragments for the presence or absence of free 3'-OH ends. Free 3'-OH ends were defined as those ends accessible to in situ addition of digoxigenin-dUTP using terminal deoxynucleotidyl transferase. MN were also assessed for centromeric sequences using standard fluorescent in situ hybridization (FISH). Combining these results, we determined that Tax oncoprotein increased the frequency of MN containing centric DNA with free 3'-OH and decreased the frequency of MN containing DNA fragments that had incorporation-inaccessible 3'-ends. Recently, it has been suggested that intracellular DNA breaks without detectable 3'-OH ends are stabilized by the protective addition of telomeric caps, while breaks with freely detectable 3'-OH are uncapped and are labile to degradation, incomplete replication, and loss during cell division. Accordingly, based on increased detection of free 3'-OH-containing DNA fragments, we concluded that HTLV-I Tax interferes with protective cellular mechanism(s) used normally for stabilizing DNA breaks.  相似文献   

13.
A soluble polymerase-template complex prepared from poliovirus-infected cells was found to incorporate radioactive UTP into trichloroacetic acid-insoluble RNA linearly for 8 h in the presence of ATP and Mg2+. Radioactive CTP or GTP was not incorporated under identical conditions. Nearest-neighbor analysis of the in vitro product demonstrated that ATP was added to the viral RNA in the form of polyadenylic acid; UTP was added internally to the 3'-OH group of all four nucelotides. The data can best be explained by the addition of the UTP to the 3'-OH groups of single-stranded breaks in the double-stranded viral RNA and ligation to the adjacent 5'-phosphate groups. The enzymatic activity was also found in encephalomyocarditis virus- and rhinovirus type 1A-infected cells but not in uninfected cells.  相似文献   

14.
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.  相似文献   

15.
The rejoining of single-strand breaks (SSBs) induced in plasmid DNA in the presence of 10 mmol dm(-3) Tris scavenger by aluminum K (Al(K)) ultrasoft X rays has been compared with that for SSBs induced by gamma radiation. The Al(K) ultrasoft X rays interact to produce low-energy secondary electrons, which are thought to be the main contributors to the formation of complex damage by low-LET radiations. The rejoining of radiation-induced SSBs was investigated using human whole cell extracts. The efficiency of rejoining of SSBs induced by Al(K) ultrasoft X rays is less than that observed for gamma-ray-induced SSBs. From the similarity of the extent of rejoining of SSBs induced by gamma rays under aerobic and anaerobic conditions, the chemical nature of the stand break termini does not significantly influence SSB rejoining. A simple nick induced in plasmid DNA by gpII protein is rejoined rapidly compared with the slower rejoining processes for radiation-induced SSBs. Therefore, ligation is not rate-determining in processing radiation-induced SSBs. This study provides further evidence that nonrejoining of radiation-induced SSBs reflects the complexity of DNA damage. From comparison of the extent of rejoining of SSBs induced by different radiations, it is inferred that double-strand breaks represent only a minor component of the overall yield of complex damage.  相似文献   

16.
Poly(ADP-ribose) polymerase 1 (PARP1), an enzyme activated by DNA strand breaks, synthesizes polymers of poly(ADP-ribose) (PAR) that modify chromatin and other proteins and play a role in DNA repair. Inhibition of PARP1 activity is considered a potentially important strategy in clinical practice, especially to sensitize tumor cells to chemo- and radio-therapy. Here we examined the influence of inhibition of PARP1 on formation of reactive oxygen species (ROS) and on DNA repair in cells exposed to ionizing radiation (IR). K562 (human myelogenous leukaemia) cells were grown and exposed to 4 or 12Gy of ionizing radiation in presence or absence of the PARP inhibitor NU1025 (100μM). Intracellular ROS were assayed using the probe 2,7-dichlorofluorescein with detection by flow cytometry and the rejoining of DNA strand breaks were followed by alkaline single cell gel electrophoresis (comet) assays. In untreated cells a significant increase in PAR formation occurred during the first 5min after IR, followed by a gradual decrease up to 30min. Addition of a PARP inhibitor arrested the production of PAR almost completely and decreased the rate of rejoining of DNA strand breaks significantly; however, 3h after irradiation we observed no difference in the amount of DNA strand breaks between PARP inhibitor-treated and untreated cells. Twelve to 48h after irradiation, an increase of ROS concentration was observed in irradiated cells and ROS levels in PARP inhibitor-treated cells were significantly higher than in cells without inhibitor. Irradiated cells grown in the presence or absence of PARP inhibitor did not differ in the frequencies of apoptotic and necrotic cells or in the activity of caspases at 24, 48 and 72h after irradiation. Poly(ADP-ribosylation) and inhibition of PARP1 appeared to modulate DNA strand break rejoining and influence the concentration of ROS in irradiated cells.  相似文献   

17.
The T4 ultraviolet endonuclease was previously shown to produce strand incisions (nicks) in ultraviolet-irradiated DNA on the 5' side of thymine dimers. The present studies demonstrate that the purified endonuclease creates 3'-OH and 5'-P termini at the sites of nicking. Photoreactivation of ultraviolet-sensitive sites, thereby demonstrating directly endonucleause has a molecular weight of approximately 18,000 and attacks ultraviolet-irradiated single-stranded Escherichia coli and M-13 DNA.  相似文献   

18.
The efficient repair of double-strand breaks (DSBs) in DNA is critical for the maintenance of genome stability. In mammalian cells, repair can occur by homologous recombination or by non-homologous end joining (NHEJ). DNA breaks caused by reactive oxygen or ionizing radiation often contain non- conventional end groups that must be processed to restore the ligatable 3'-OH and 5'-phosphate moieties which are necessary for efficient repair by NHEJ. Here, using cell-free extracts that efficiently catalyse NHEJ in vitro, we show that human polynucleotide kinase (PNK) promotes phosphate replacement at damaged termini, but only within the context of the NHEJ apparatus. Phosphorylation of terminal 5'-OH groups by PNK was blocked by depletion of the NHEJ factor XRCC4, or by an inactivating mutation in DNA-PK(cs), indicating that the DNA kinase activity in the extract is coupled with active NHEJ processes. Moreover, we find that end-joining activity can be restored to PNK-depleted extracts by addition of human PNK, but not bacteriophage T4 PNK. This work provides the first demonstration of a direct, specific role for human PNK in DSB repair.  相似文献   

19.
In recent years two mechanisms have been proposed for the production of DNA strand breaks in cells undergoing oxidative stress: (i) DNA attack by OH radical, produced by Fenton reaction catalyzed by DNA-bound iron; and (ii) DNA attack by calcium-activated nucleases, due to the increase of cytosolic and nuclear calcium induced by oxidative stress. We set out to investigate the participation of the former mechanism by detecting and quantifying 3'-phosphoglycolate, a 3' DNA terminus known to be formed by OH radical attack to the deoxyribose moiety, followed by sugar ring rupture and DNA strand rupture. These structures were found in DNA of monkey kidney cells exposed to hydrogen peroxide, iron nitrilotriacetate or ascorbate, all species known to favor a cellular pro-oxidant status. The method employed to measure 3' phosphoglycolate was the 32P-postlabeling assay. Repair time course experiments showed that it takes 10 h for 3'-phosphoglycolate to be removed from DNA. It was found that the DNA of both control cells and cells exposed to hydrogen peroxide had a very poor capacity of supporting in vitro DNA synthesis, catalyzed by DNA polymerase I. If the DNA was previously incubated with exonuclease III, an enzyme able to expose 3'-OH primers by removal of 3'-phosphoglycolate and 3'-phosphate termini the in vitro synthesis was substantially increased. This result shows that either of these termini are present at the break and that 3'-hydroxyl termini are virtually absent. At least 25% of the strand breaks exhibited 3'-phosphoglycolate termini as determined by the 32P-postlabeling assay, but due to the characteristic of the method this percentage is likely to be higher. These results favor the hypothesis that an oxidative agent generated by Fenton reaction is responsible for DNA strand breakage in cells undergoing oxidative stress.  相似文献   

20.
Four hitherto undescribed endodeoxyribonucleases, temporarily designated A1, A2, A3, and B, have been isolated from E. coli K-12. Each requires Mg++ and is not stimulated by ATP or S-adenosylmethionine. A3 is strongly inhibited by Fe+++ and weakly inhibited by ATP, S-adenosylmethionine, and DPN, whereas B is inhibited by caffeine. Each can be purified free of exonuclease or DNA-3′-phosphatase. A1 (molecular weight approximately 72,000) cleaves single-stranded, circular fd DNA to form 3′-hydroxyl termini and introduces nicks and breaks in the closed, double-stranded replicative form DNA of fd (fd RFI). A2 (molecular weight approximately 46,000) cleaves fd DNA and introduces nicks and breaks in RFI, forming 3′-hydroxyl- and 5′-phosphoryl termini. A3 (molecular weight approximately 38,000) cleaves fd DNA to form 3′-hydroxyl termini and introduces only nicks in fd RFI. Irradiation of the RFI with ultraviolet light markedly increases the rate of hydrolysis by A3. B appears to form 3′-phosphoryl termini with fd DNA, but its characterization is highly preliminary due to its instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号