首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal α-actin mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.  相似文献   

2.
Stimulation of rat peritoneal neutrophils with staurosporine (64 nM) induced production of macrophage inflammatory protein-2 (MIP-2) and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase/MAP kinase (ERK/MAPK). The staurosporine-induced MIP-2 production at 4 h was inhibited by the highly specific p38 MAPK inhibitor SB 203580 and the MAPK/ERK kinase (MEK-1) inhibitor PD 98059 in a concentration-dependent manner. By treatment with SB 203580 (1 microM) or PD 98059 (50 microM), the staurosporine-induced increase in the levels of mRNA for MIP-2 was only partially lowered, although the staurosporine-induced MIP-2 production was completely inhibited. Consistent with the inhibition by the protein synthesis inhibitor cycloheximide, SB 203580 and PD 98059 inhibited MIP-2 production at 4 h either when added simultaneously with staurosporine or 2 h after stimulation with staurosporine. In contrast, the DNA-dependent RNA polymerase inhibitor actinomycin D did not inhibit MIP-2 production at 4 h when it was added 2 h after staurosporine stimulation. Dot blot analysis demonstrated that treatment with SB 203580 or PD 98059 down-regulates the stability of MIP-2 mRNA. These results suggested that p38 MAPK and ERK/MAPK pathways are involved in translation of MIP-2 mRNA to protein and stabilization of MIP-2 mRNA.  相似文献   

3.
目的:观察内皮素-1(ET-1)对大鼠血管平滑肌细胞(VSMCs)产生单核细胞趋化蛋白-1(MCP-1)的影响及其机制。方法:培养大鼠血管平滑肌细胞(VSMCs)。细胞分为2组:ET-1刺激组:以不同浓度ET-1刺激VSMCs不同时间;阻断剂干预组:VSMCs分别与不同阻断剂[ETAR、ETBR阻断剂BQ123、BQ788,抗氧化剂N-乙酰半胱氨酸(NAC),ERK、p38MAPK、JNK及NF-κB抑制剂PD98059、SB203580、SP600125及PDTC]预先孵育30 min,再加入ET-1刺激24 h。在预定时间,以酶联免疫吸附(ELISA)法、逆转录聚合酶链反应(RT-PCR)法分别测定不同因素下VSMCs MCP-1蛋白质及mRNA表达量。VSMCs分别与不同阻断剂(BQ123、BQ788、NAC、PD98059、SB203580及SP600125预先孵育20 min,再加入ET-1刺激5 min,免疫印迹(WB)法测定VSMCs胞浆中细胞外调节蛋白激酶(ERK)、p38丝裂原活化蛋白激酶(p38MAPK)、c-Jun氨基末端激酶(JNK)及其各自磷酸化蛋白质的水平。各项检测均重复3次。结果:ET-1能刺激VSMCs MCP-1蛋白质及mRNA表达,其表达量随ET-1浓度及刺激时间的增加呈升高趋势(P<0.05,P<0.01);BQ123、NAC、PD98059、SB203580及PDTC能显著抑制ET-1诱导的大鼠VSMCs MCP-1蛋白质及mRNA表达(P<0.01),而BQ788及SP600125对此作用无明显影响。BQ123、NAC与PD98059或SB203580能分别抑制ET-1刺激后VSMCs胞浆内ERK及p38MAPK的磷酸化(P<0.05,P<0.01),而ET-1对JNK的磷酸化无明显激活作用。结论:ET-1通过ETAR、ROS、ERK、p38MAPK及NF-κB诱导大鼠VSMCs产生MCP-1。  相似文献   

4.
5.
Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-β (TGF-β) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-β DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-β, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.  相似文献   

6.
Huang CD  Chen HH  Wang CH  Chou CL  Lin SM  Lin HC  Kuo HP 《Life sciences》2004,74(20):2479-2492
Neutrophils and their derived elastase are abundant in chronic inflammatory responses of asthma. This study aimed to investigate the mitogenic effect of elastase on airway smooth muscle (ASM) cells and the implicated signal transduction pathway. Near confluent cultured human ASM cells were treated with human neutrophil elastase (HNE, 0.01 to 0.5 microg/ml) or vehicle for 24 hours with or without extracellular signal-regulated kinase (ERK) inhibitor (PD98059, 30 microM), p38 kinase inhibitor (SB203580, 10 microM) or elastase inhibitor II (100 microg/ml). The ASM cell numbers were counted by a hemocytometer and DNA synthesis was assessed by flowcytometry. Western blots analysis for the expression of ERK, p38 and cyclin D1 was determined. HNE dose-dependently increased ASM cell numbers and the percentage of cells entering S-phase of cell cycle. This response was abolished by neutrophil elastase inhibitors and attenuated by PD98059, but not SB203580. HNE increased ERK phosphorylation and cyclin D1 expression. Pretreatment with PD98059 significantly inhibited elastase-induced cyclin D1 activity. The increased ASM cellular gap and cell shape change by proteolytic activity of HNE may be contributory to ERK activation and therefore cell proliferation. Our results demonstrate that HNE is mitogenic for ASM cells by increasing cyclin D1 activity through ERK signaling pathway.  相似文献   

7.
8.
The effect of erythropoietin (Epo) on the expression of mitogen-activated protein kinase (MAPK) target genes egr-1 and c-fos was investigated in Epo-responsive murine erythroblastic cell line ELM-I-1. Epo induced a transient rise in egr-1 mRNA without a similar effect on c-fos expression. The induction of egr-1 correlated with a rapid ERK1/2 phosphorylation and was prevented with MEK1/2 inhibitors PD 98059 and UO126. The p38 inhibitor SB 203580 enhanced ERK1/2 phosphorylation and egr-1 mRNA levels. Longer incubations of ELM-I-1 cells with Epo revealed a second later phase of increase in egr-1 expression which was also prevented by MEK1/2 inhibitors, whereas SB 203580 had a stimulatory effect. In contrast, the beta-globin mRNA production was enhanced in the presence of PD 98059 and UO126 and reduced by SB 203580. The results suggest a regulatory role of egr-1 expression in Epo signal transduction and provide pharmacological evidence for the negative modulation of differentiation-specific gene expression by the ERK1/2 pathway in murine erythroleukemia cells.  相似文献   

9.
10.
11.
Angiotensin II (AT II) is thought to be associated with the development of renal interstitial fibrosis. However, the molecular mechanisms of the interstitial fibrosis have not been extensively studied. We have examined the role of mitogen-activated protein kinases (MAPKs) on fibronectin (FN) accumulation in cultured normal rat kidney interstitial fibroblasts (NRK 49F cell line). AT II caused dose-dependent increases in FN accumulation and FN mRNA in these cells. AT II also activated the extracellular signal-regulated kinase (ERK) and p38 MAPK in the presence of AT II. These increases in FN accumulation and activation of MAPKs were inhibited with AT I receptor antagonist (ARB; CV-11974) in renal interstitial fibroblasts. The inhibitors against ERK (PD98059) and p38 MAPK (SB203580) significantly inhibited AT II-induced increases in FN mRNA. These findings suggest that the MAPKs play an important role in AT II-mediated renal interstitial fibrosis and that ARB may be useful for preventing renal interstitial fibrosis.  相似文献   

12.
Many neutrophil responses, including chemotaxis, exocytosis, respiratory burst activity and chemokine synthesis, are mediated by p38 MAPK. MAPK-activated protein kinase-2 (MK2) is activated by p38 MAPK in human neutrophils. The present study tested the hypothesis that MK2 mediates multiple p38 MAPK-dependent responses in human neutrophils by comparing the effect of the p38 MAPK inhibitor, SB203580, with an MK2 inhibitory peptide. Both SB203580 and MK2 inhibitory peptide attenuated respiratory burst activity, exocytosis, and chemotaxis. Lipopolysaccharide (LPS)-induced IL-8 production was inhibited by SB203580, but not by the MK2 inhibitory peptide. Inhibition of chemotaxis and respiratory burst activity by SB203580 was less than that of MK2 inhibitory peptide. Inhibition of extracellular signal-regulated kinase (ERK) activity by PD98059 attenuated superoxide release and chemotaxis, and simultaneous treatment with SB203580 and PD98059 demonstrated additive inhibition. ERK phosphorylated MK2 in vitro and activated MK2 in f-methionyl-leucyl-phenylalanine (FMLP)-stimulated neutrophils. These data suggest that MK2 mediates both ERK- and p38 MAPK-dependent neutrophil responses.  相似文献   

13.
This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and MIP-1 alpha , and enzyme, COX-2/prostaglandin E2 (PGE2) in infected cells via western blot, [3H]-uracil incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. MIP-1 alpha mRNA was increased in macrophages at 18 hr PI. MCP-1 and MIP-1 alpha were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. PGE2 from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, MIP-1 alpha , COX-2 and PGE2 were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.  相似文献   

14.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

15.
Osteosarcoma is the most common primary malignant bone tumor, accounting for approximately 20% of all primary sarcomas in bone. Although treatment modalities have been improved over the past decades, it is still a tumor with a high mortality rate in children and young adults. Based on histological considerations, osteosarcoma arises from impaired differentiation of these immature cells into more mature types and that correction of this impairment may reduce malignancy and increase the efficiency of chemotherapy. The purpose of this study was to determine the effect of specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK) and p38 on the differentiation of human osteosarcoma cell line SaOS-2 cells. We found that PD98059, a specific inhibitor of MEK, inhibited the serum-stimulated proliferation of SaOS-2 cells; whereas SB203580, a specific inhibitor of p38 MAPK, had little effect on it. SB203580 suppressed ALPase activity, gene expression of type I collagen, and expression of ALP and BMP-2 mRNAs; whereas PD98059 upregulated them dose dependently. In addition, immunoblot and immunostaining analysis revealed that phosphorylation of ERK was increased by treatment with SB203580; whereas PD98059 increased the phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteosarcoma cell differentiation is regulated by the balance between the activities of the ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteosarcoma cell differentiation, whereas the p38 pathway does so positively. MEK inhibitor may thus be a good candidate for altering the expression of the osteosarcoma malignant phenotype.  相似文献   

16.
Wu SJ  Ng LT  Lin CC 《Life sciences》2005,77(8):938-951
Cinnamaldehyde (Cin) has been shown to be effective in inducing apoptotic cell death in a number of human cancer cells. However, the intracellular death signaling mechanisms by which Cin inhibits tumor cell growth are poorly understood. In this study, we investigated the effect of mitogen-activated protein kinases (MAPKs) inhibitors [namely SP600125 (a specific JNK inhibitor), SB203580 (a specific p38 inhibitor) and PD98059 (a specific ERK inhibitor)] on the stress-responsive MAPK pathway induced by Cin in PLC/PRF/5 cells. Trypan blue staining assay indicated that Cin was cytotoxic to PLC/PRF/5 cells. Cin caused cell cycle perturbation (S-phase arrest) and triggered apoptosis as revealed by the externalization of annexin V-targeted phosphatidylserine and accumulation of sub-G1 peak. It down-regulated the Bcl-2 and Mcl-1 expression, and up-regulated Bax protein in a time-response manner. Treatment with 1 microM Cin resulted in an activation of caspase-8 and cleavage of Bid to its truncated form in a time-dependent pattern. JNK, ERK and p38 kinases in cells were activated and phosphorylated after Cin treatment. Pre-incubation with SP600125 and SB203580 markedly suppressed the effect of Cin-induced apoptosis, but not PD98059. Both SP600125 and SB203580 significantly prevented the phosphorylation of JNK and p38 proteins, but not ERK. These results conclude that Cin triggers apoptosis in PLC/PRF/5 cells could be through the activation of pro-apoptotic Bcl-2 family (Bax and Bid) proteins and MAPK signaling pathway.  相似文献   

17.
18.
19.
Hepatic stellate cells (HSC) coordinate the liver wound-healing response through secretion of several cytokines and chemokines, including CCL2 (formerly known as monocyte chemoattractant protein-1). In this study, we evaluated the role of different proteins of the MAPK family (ERK, p38(MAPK), and JNK) in the regulation of CCL2 expression by HSC, as an index of their proinflammatory activity. Several mediators activated all three MAPK, including TNF, IL-1, and PDGF. To assess the relative role of the different MAPKs, specific pharmacological inhibitors were used; namely, SB203580 (p38(MAPK)), SP600125 (JNK), and PD98059 (MEK/ERK). The efficacy and specificity of the different inhibitors in our cellular system were verified analyzing the enzymatic activity of the different MAPKs using in vitro kinase assays and/or testing the inhibition of phosphorylation of downstream substrates. SB203580 and SP600125 dose-dependently inhibited CCL2 secretion and gene expression induced by IL-1 or TNF. In contrast, inhibition of ERK did not affect the upregulation of CCL2 induced by the two cytokines. Finally, activin A was also found to stimulate CCL2 expression and to activate ERK, JNK, p38, and their downstream targets. Unlike in cells exposed to proinflammatory cytokines, all three MAPKs were required to induce CCL2 secretion in response to activin. We conclude that members of the MAPK family differentially regulate cytokine-induced chemokine expression in human HSC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号