首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vascular endothelial cell growth factor (VEGF) was originally described as a potent vascular permeability factor (VPF) that importantly contributes to vascular pathobiology. The signaling pathways that underlie VEGF/VPF-induced permeability are not well defined. Furthermore, endogenous vascular peptides that regulate this important VPF function are currently unknown. We report here that VPF significantly enhances permeability in aortic endothelial cells via a linked signaling pathway, sequentially involving Src, ERK, JNK, and phosphatidylinositol 3-kinase/AKT. This leads to the serine/threonine phosphorylation and redistribution of actin and the tight junction (TJ) proteins, zona occludens-1 and occludin, and the loss of the endothelial cell barrier architecture. Atrial natriuretic peptide (ANP) inhibited VPF signaling, TJ protein phosphorylation and localization, and VPF-induced permeability. This involved both guanylate cyclase and natriuretic peptide clearance receptors. In vivo, transgenic mice that overexpress ANP showed significantly less VPF-induced kinase activation and vascular permeability compared with non-transgenic littermates. Thus, ANP acts as an anti-permeability factor by inhibiting the signaling functions of VPF that we define here and by preserving the endothelial cell TJ functional morphology.  相似文献   

2.
Placental growth factor (PlGF) competes with vascular endothelial growth factor (VEGF) for binding to VEGF receptor (VEGFR)-1 but does not bind VEGFR2. Experiments show that PlGF can augment the response to VEGF in pathological angiogenesis and in models of endothelial cell survival, migration, and proliferation. This synergy has been hypothesized to be due to a combination of the following: signaling by PlGF through VEGFR1 and displacement of VEGF from VEGFR1 to VEGFR2 by PlGF, causing increased signaling through VEGFR2. In this study, the relative contribution of PlGF-induced VEGF displacement to the synergy is quantified using a mathematical model of ligand-receptor binding to examine the effect on ligand-receptor complex formation of VEGF and PlGF acting together. Parameters specific to the VEGF-PlGF system are used based on existing data. The model is used to simulate in silico a specific in vitro experiment in which VEGF-PlGF synergy is observed. We show that, whereas a significant change in the formation of endothelial surface growth factor-VEGFR1 complexes is predicted in the presence of PlGF, the increase in the number of VEGFR2-containing signaling complexes is less significant; these results were shown to be robust to significant variation in the kinetic parameters of the model. Synergistic effects observed in that experiment thus appear unlikely to be due to VEGF displacement but to a shift from VEGF-VEGFR1 to PlGF-VEGFR1 complexes and an increase in total VEGFR1 complexes. These results suggest that VEGFR1 signaling can be functional in adult-derived endothelial cells.  相似文献   

3.
《Cytotherapy》2021,23(9):810-819
Background aimsThe vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy.MethodsHere the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus.ResultsAfter co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model.ConclusionsThe authors’ results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.  相似文献   

4.
J Plouet  H Moukadiri 《Biochimie》1990,72(1):51-55
Recently, a new growth factor was purified to homogeneity; its biological activity appeared to be restricted to vascular endothelial derived cells. As it was also angiogenic in vivo, it was provisionally named vasculotropin. An iodination procedure used to label vasculotropin did not damage the molecule; it was thus possible to undertake binding studies. The binding of iodinated vasculotropin to bovine brain capillary endothelial cells reached saturation at 7 ng/ml and half maximal binding occurred at 1.5 ng/ml. Scatchard analysis of the data demonstrated 2 classes of binding sites with apparent dissociation constants of 4 and 41 pM and 600 and 4,100 sites per cell respectively. The interaction was specific since an excess of unlabelled vasculotropin, but no Fibroblast Growth Factor or Transforming Growth Factor Beta almost totally abolished the binding of the tracer. A sensitive radioreceptor-assay convenient for measuring vasculotropin in biological samples is described.  相似文献   

5.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

6.
7.
Platelet-derived growth factor. Specific binding to target cells   总被引:27,自引:0,他引:27  
The binding of the human platelet-derived growth factor (PDGF) to Swiss mouse 3T3 cells have been investigated. The binding is specific and reversible. The dissociation constant is approximately 0.7 x 10(-9) M with approximately 400,000 binding sites/cell. Two forms of PDGF, PDGF I (Mr = 31,000) and PDGF II (Mr = 28,000), previously identified (Deuel, T. F., Huang, J. S., Proffitt, R. T., Baenziger, J. U., Chang, D., and Kennedy, B. B. (1981) J. Biol. Chem. 256, 8896-8899 and Deuel, T. F., Huang. J. S., Proffitt, R. T., Chang, D., and Kennedy, B. B. (1981) J. Supramol. Cell Biochem. 5 (Suppl.), 128) bind equally well to 3T3 cells. Polylysine and histone, but not cytochrome c, partially inhibit the binding of PDGF to 3T3 cells. Protamine sulfate blocks binding in a competitive manner and is capable of displacing PDGF previously bound to the cell surface. EDTA influenced neither the binding of PDGF to the cell surface nor the displacement of cell-bound PDGF. At 37 degrees C, PDGF bound to the cell surface is lost and iodotyrosine is released free into the supernatant, with each process having a t 1/2 of approximately 90 min. The binding activity of the putative PDGF receptor is markedly reduced by previous incubation with PDGF, thereby apparently regulating its activity in a manner similar to epidermal growth factor.  相似文献   

8.
The hemopoietic growth factor granulocyte-macrophage colony-stimulating factor, GM-CSF, specifically controls the production of granulocytes and macrophages. This report describes the binding of biologically-active 125I-labeled murine GM-CSF to a range of hemopoietic cells. Specific binding was restricted to murine cells and neither rat nor human bone marrow cells appeared to have surface receptors for 125I-labeled GM-CSF. 125I-Labeled GM-CSF only appeared to bind specifically to cells in the myelomonocytic lineage. The binding of 125I-labeled GM-CSF to both bone marrow cells and WEHI-3B(D+) was rapid (50% maximum binding was attained within 5 min at both 20 degrees C and 37 degrees C). Unlabeled GM-CSF was the only polypeptide hormone which completely inhibited the binding of 125I-labeled GM-CSF to bone marrow cells, however, multi-CSF (also called IL-3) and G-CSF partially reduced the binding of 125I-labeled GM-CSF to bone marrow cells. Interestingly, the binding of 125I-labeled GM-CSF to a myelomonocytic cell line, WEHI-3B(D+), was inhibited by unlabeled GM-CSF but not by multi-CSF or G-CSF. Scatchard analysis of the binding of 125I-labeled GM-CSF to WEHI-3B(D+) cells, bone marrow cells and peritoneal neutrophils indicated that there were two classes of binding sites: one of high affinity (Kd1 = 20 pM) and one of low affinity (Kd2 = 0.8-1.2 nM). Multi-CSF only inhibited the binding of 125I-labeled GM-CSF to the high affinity receptor on bone marrow cells: this inhibition appeared to be a result of down regulation or modification of the GM-CSF receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.  相似文献   

10.
Abnormal adhesion of red blood cells to the endothelium has been linked to the pathophysiology of several diseases associated with vascular disorders. Various biochemical changes, including phosphatidylserine exposure on the outer membrane of red blood cells as well as plasma protein levels, have been identified as being likely to play a key role, but the detailed interplay between plasma factors and cellular factors remains unknown. It has been proposed that the adhesion-promoting effect of plasma proteins originates from ligand interaction, but evidence substantiating this assumption is often missing. In this work, we identified an alternative pathway by demonstrating that nonadsorbing macromolecules can also have a marked impact on the adhesion efficiency of red blood cells with enhanced phosphatidylserine exposure to endothelial cells. It is concluded that this adhesion-promoting effect originates from macromolecular depletion interaction and thereby presents an alternative mechanism by which plasma proteins could regulate cell-cell interactions. These findings should thus be of potential value for a detailed understanding of the pathophysiology of diseases associated with vascular complications and might be applicable to a wide range of cell-cell interactions in plasma or plasma-like media.  相似文献   

11.
Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of alphav beta3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional beta3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of alphav beta3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to alphav beta3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of beta3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering beta3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism for vascular leakage after infection by pathogenic hantaviruses and the means to inhibit hantavirus-directed endothelial cell permeability that may be applicable to additional vascular leak syndromes.  相似文献   

12.
13.
Transforming growth factor beta (TGF beta) regulates the growth of human umbilical vein endothelial cells (HUVEC) differently depending on the isoform of TGF beta and the culture conditions. The cells are resistant to growth inhibition by TGF beta when the cells are cultured on substratum coated with gelatin. However, the proliferation of HUVEC cultured on substratum without a gelatin coating is inhibited by TGF beta, depending on the isoform and concentration of TGF beta. Binding assays with 125I-TGF beta 1 reveal that HUVEC contain a single class of high-affinity (Kd = 4.4 pM) TGF beta 1 binding sites with 8500 sites per cell. Affinity cross-linking studies demonstrate that HUVEC express 180 and 80 kDa TGF beta 1 binding sites that do not bind TGF beta 2. The reduction and the removal of glycosaminoglycans does not affect the electrophoretic mobility of the 180-kDa binding protein cross-linked with 125I-TGF beta 1. Therefore, the 180-kDa TGF beta 1 binding protein is not related to the type III TGF beta receptor, but might be a novel TGF beta 1-specific receptor/binding protein expressed on vascular endothelial cells. The expression of TGF beta 1 binding sites is not affected by the presence or absence of the gelatin coating on the culture substratum. The data suggest that a gelatin coating does not regulate the susceptibility of HUVEC to TGF beta 1 at the level of the receptor/binding proteins, and that growth inhibition of HUVEC by TGF beta 1 is linked to the regulation of extracellular matrices required for the interaction between the cells and the substratum.  相似文献   

14.
The Kruppel-like factor KLF2 was recently identified as a novel regulator of endothelial pro-inflammatory and pro-thrombotic function. Here it is shown that overexpression of KLF2 potently inhibits vascular permeability factor/vascular endothelial growth factor (VEGF-A)-mediated angiogenesis and tissue edema in the nude ear mouse model of angiogenesis. In vitro, KLF2 expression retards VEGF-mediated calcium flux, proliferation and induction of pro-inflammatory factors in endothelial cells. This effect is due to a potent inhibition of VEGFR2/KDR expression and promoter activity. These observations identify KLF2 as a regulator of VEGFR2/KDR and provide a foundation for novel approaches to regulate angiogenesis.  相似文献   

15.
16.
Platelet-derived growth factor. II. Specific binding to cultured cells   总被引:53,自引:0,他引:53  
We have prepared radioiodinated purified platelet-derived growth factor (125I-PDGF) which retains full mitogenic activity. The binding of 125I-PDGF to Swiss 3T3 cells is saturable and highly competed by whole blood serum, purified unlabeled PDGF, and by material from each stage in the purification of PDGF from platelet-rich plasma. Other purified mitogens and substances tested do not compete. 125I-PDGF binding to fibroblasts, 3T3 cells, and arterial smooth muscle cells shows an apparent dissociation constant of 10(-11) M, comparable to the range in which PDGF is mitogenic. A clone of Swiss 3T3 cells obtained from a population selected repeatedly against mitogenic response to PDGF shows a greatly reduced mitogenic response to PDGF and binds only 5% as much 125I-PDGF/cell. The binding capacity of the different cell types tested ranges from 2,500 binding sites/cell on the poorly responding variant to 390,000 binding sites/cell on one strain of Swiss 3T3 cells. Cell types that do not respond to PDGF do not show specific high affinity binding of 125I-PDGF. At 4 degrees C, 125I-PDGF binding to monolayer cultures is relatively slow. Equilibrium binding of low concentrations of 125I-PDGF is not achieved during 7 h unless the binding medium is constantly mixed. 125I-PDGF binding at 4 degrees C shows a broad pH optimum between 6.3 and 8.0. Binding does not seem to require Ca2+ or Mg2+ but is reduced more than 6-fold if both monovalent and divalent salts are omitted. The initial rate of 125I-PDGF binding is greater at 37 degrees C than at 4 degrees C but cell-associated 125I begins to decline soon after reaching a peak value at 30-60 min. Coincident with this decline, trichloroacetic acid-soluble 125I appears in the medium and the binding capacity of the cells declines. These phenomena suggest that PDGF and its receptor may be internalized and degraded.  相似文献   

17.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

18.
19.
20.
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor with a unique specificity for vascular endothelial cells. In addition to its role in vasculogenesis and embryonic angiogenesis, VEGF is implicated in pathologic neovascularization associated with tumors and diabetic retinopathy. Four different constructs of a short variant of VEGF sufficient for receptor binding were overexpressed in Escherichia coli, refolded, purified, and crystallized in five different space groups. In order to facilitate the product on of heavy atom derivatives, single cysteine mutants were designed based on the crystal structure of platelet-derived growth factor. A construct consisting of residues 8 to 109 was crystallized in space group P21, with cell parameters a = 55.6 Å, b = 60.4 Å, c = 77.7 Å, β = 90.0°, and four monomers in the asymmetric unit. Native and derivative data were collected for two of the cysteine mutants as well as for wild-type VEGF. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号