首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Incubations of [1-14C]arachidonic acid with unstimulated human polymorphonuclear leukocytes resulted in the formation of four new metabolites in a previously described reverse-phase HPLC system. Three of these metabolites were largely suppressed in a CO/O2 (80/20, by vol.) atmosphere indicating a cytochrome-P450-dependent monooxygenase reaction. In agreement with this assumption is their NADPH/O2-dependent formation in the microsomal fraction. One metabolite was identified by gas chromatography/mass spectrometry analysis as omega-hydroxy-arachidonic acid and the two others were secondary products identified as omega-carboxy-arachidonic acid and 5,20-dihydroxy-E,Z,Z,Z-6,8,11,14-eicosatetraenoic acid. Since the affinity for arachidonate of the omega-monooxygenase was quite low and the presence of LTB4 suppressed the omega-hydroxylation of arachidonate, we conclude that the known LTB4 omega-monooxygenase is responsible for the formation of omega-hydroxy-arachidonate. It is unlikely, however, that significant concentrations of these metabolites are formed by activated polymorphonuclear leukocytes in vivo. The fourth metabolite remains tightly associated with the leukocytes but has not been further characterized.  相似文献   

2.
1-O-[3H]Alkyl-2-acetyl-sn-glycero-3-phosphocholine ([3H]PAF) and 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine ([3H]lyso-PAF) when incubated with rat polymorphonuclear leukocytes (PMN) were rapidly metabolized to 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphocholine ([3H]alkyl-acyl-GPC) containing long chain acyl groups in the sn-2 position. The specificity and the absolute requirements of arachidonate (20:4) for acylation into PAF and lyso-PAF were investigated by comparing the rate of [3H]PAF and [3H]lyso-PAF metabolism by control rat PMN with that by rat PMN depleted of 20:4. Comparable rates of metabolism of [3H]PAF and [3H]lyso-PAF by both control and 20:4-depleted PMN were observed at all the concentrations of PAF and lyso-PAF studied. The nature of the fatty acyl group incorporated into the sn-2 position of the [3H]alkyl-acyl-GPC formed was analyzed by argentation chromatography. Dienoic fatty acids were the major fatty acid incorporated into the alkyl-acyl-GPC by both control and 20:4-depleted PMN at all the incubation times studied. At 3 min of incubation with [3H]PAF and [3H]lyso-PAF, control PMN had small but significant amounts of [3H]alkyl-acyl-GPC containing tetraenoic fatty acids, the concentration of which gradually increased as the incubation time progressed. On the other hand, under similar conditions, 20:4-depleted PMN had only trace amounts of the [3H]alkyl-acyl-GPC with tetraenoic fatty acid and the concentration of which remained at the low level throughout the incubation time. At 3 min of incubation, the 20:4-depleted PMN had small but significant amounts of [3H]alkyl-acyl-GPC with saturated fatty acids, the amount of which declined by 10 min and remained at that level as the incubation time progressed. While the concentration of [3H]alkyl-acyl-GPC with dienoic fatty acids in the 20:4-depleted cells gradually increased with the progress of incubation time, these molecular species of GPC in the control PMN remained more or less constant. In spite of a very high concentration (equivalent to that of 20:4 in control PMN) of eicosatrienoic acid (20:3 delta 5,8,11) in the 20:4-depleted PMN, no significant amounts of [3H]alkyl-acyl-GPC with trienoic fatty acid were formed by these cells. The rate of metabolism of [3H]PAF and [3H]lyso-PAF by the resident macrophages isolated from control and 20:4-depleted rats was similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The addition of oleoylanilide or linoleylanilide to human polymorphonuclear leukocytes induces a time- and dose-dependent generation of arachidonic acid. Half-maximal effect is caused by a dose of 0.2 mg linoleylanilide/ml. Fatty acid anilides also produce a time- and dose-dependent inhibition of the synthesis of triacylglycerol. Half-maximal effect is caused by 1 microgram linoleylanilide/ml. These results indicate that fatty acid anilides, which have been found in the illegal cooking oil which intoxicated thousands of Spaniards, alter lipid metabolism in human polymorphonuclear leukocytes.  相似文献   

4.
The effects of alcohols on the formation of leukotrienes, 5-HETE and prostaglandin D2 in mastocytoma cells and human neutrophils were studied. In murine mastocytoma cells, alcohols appear to have at least two different effects on the production of these arachidonic acid metabolites. At low levels of cellular arachidonic acid achieved after stimulation with calcium ionophore A23187 or addition of low levels of exogenous arachidonic acid, alcohols appear to have a general inhibitory effect on the production of lipoxygenase metabolites. In the presence of higher concentrations of cellular arachidonic acid, ethanol and methanol stimulated the production of lipoxygenase metabolites, but had no large stimulatory effect on the cyclo-oxygenase metabolite, prostaglandin D2. Under these conditions, n-propanol and t-butanol have inhibitory effects on leukotriene production. Human neutrophils are less sensitive to ethanol than mastocytoma cells, but stimulatory effects were still found at high ethanol concentrations (220-430 mM).  相似文献   

5.
6.
Previous studies have demonstrated that [3H]arachidonic acid is released from prelabeled human neutrophil phospholipids when the cells are stimulated by calcium ionophore A23187 or by opsonized zymosan. Neither lysophospholipid generated by phospholipase A2 activity, diacylglycerol nor monoacylglycerol produced via phospholipase C/diacylglycerol lipase action have been identified following neutrophil challenge. The inability to detect any intermediates during the release of arachidonate is due to either rapid reacylation of lysophospholipid or conversion of diacylglycerol (monoacylglycerol) to cellular acylglycerols. The addition of exogenous [14C]fatty acid at the time of challenge was employed to determine the involvement of either phospholipase A2 or phospholipase C activities. Neutrophil stimulation with calcium ionophore A23187 resulted in an incorporation of exogenous [14C]arachidonate into phosphatidylinositol and phosphatidylcholine, those phospholipids which specifically release arachidonate. When the saturated fatty acid, [14C]stearate, replaced [14C]arachidonate, very little [14C]fatty acid was incorporated into any of the phospholipid species. Lipid phosphorus measurements revealed no significant mass change in any phospholipid class following ionophore challenge. Production of [14C]phosphatidic acid was not detected, as would be expected if diacylglycerol kinase and de novo phospholipid metabolism were significantly involved.  相似文献   

7.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosapentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPA are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a 'Max EPA' fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F1 alpha but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA group than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

8.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosaspentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPa are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a ‘Max EPA’ fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA grou than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

9.
The influence of endotoxin on rat polymorphonuclear leucocytes (PMN) ability to generate oxygen free radicals (OFR) has been studied by chemiluminescence method. PMNs derived from intact animals were used as a control. PMNs derived from animals with 1.5 h endotoxemia increased OFR production after stimulation by latex. In contrast, PMNs derived from intact animals and preincubated with endotoxin for 1.5 h decreased OFR production after stimulation bw latex. It was proposed that stimulating effect of endotoxin on PMNs in vivo was mediated by plasma components.  相似文献   

10.
Lipoxygenase metabolites of guinea pig peritoneal polymorphonuclear leukocytes stimulated with 10 microM A23187 plus arachidonic acid were isolated and identified. These metabolites were compared with each other and to chemically synthesized arachidonate metabolites for their ability to stimulate leukocyte degranulation. 5(S),12(R)-Dihydroxy-6,8,10-(cis/trans/trans)14-cis-eicosatetraenoic acid (leukotriene B4) produced a significant release of lysozyme, but not beta-glucuronidase or beta-N-acetylglucosaminidase at low concentrations (EC50 = 6.5 x 10(-9) M), while the leukocyte nonenzymatically generated 5,12-or 5,6-dihydroxyeicosatetraenoic acids had no effect at these concentrations. Higher concentrations (1--10 microM) of all the dihydroxyeicosatetraenoic acids, 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) and its hydroperoxy precursor stimulated significant lysozyme release which was greater than that produced by 15-hydroxy-5,8,11-13-eicosatetraenoic acid, arachidonic acid, or its acetylene analogue, 5,8,11,14-eicosatetraynoic acid. Micromolar concentrations of leukotriene B4 and 5-HETE also stimulated significant release of beta-N-acetylglucosaminidase above controls, but not beta-glucuronidase. These results suggest that leukotriene B4 may play a role in regulating the release of certain granule-bound enzymes from polymorphonuclear leukocytes.  相似文献   

11.
The effect of methanol on the ability of elicited rat peritoneal leukocytes to metabolise endogenous and exogenous arachidonic acid was studied using 2H8-arachidonic acid as the source of exogenous arachidonic acid and calcium ionophore A23187 as the lipoxygenase stimulus. As the methanol concentration increased from 0 to 992 mM there was a slight decrease in the total amount of LTB4 and related compounds formed, however examination of the ratio of undeuterated to deuterated LTB4 formed revealed that as the methanol concentration increased from 0 to 992 mM, the percentage of undeuterated LTB4 present decreased significantly from 57 +/- 9% to 2 +/- 1%. Methanol interferes with the ability of these cells to utilise endogenous arachidonic acid even in the presence of the powerful stimulus calcium ionophore A23187 thus allowing the facile biosynthesis of a range of deuterium labelled arachidonic acid metabolites.  相似文献   

12.
In PMN leukocytes isolated from rabbit peritoneal exudate the major phospholipids were choline phosphoglycerides (40%), ethanolamine phosphoglycerides (26%) and sphingomyelin (20%) with lesser amounts (3–6%) of serine and inositol phosphoglycerides. The essential fatty acid, linoleic acid, predominated (>35%) in each phospholipid except in inositol phosphoglycerides where it was slightly less than arachidonate and in sphingomyelin where saturated acids predominated. However, on a total mass basis there was more arachidonate in ethanolamine and choline phosphoglycerides than in inositol phosphoglycerides. The uptake, incorporation and metabolism of [1-14C] fatty acids of varying chain length and degrees of unsaturation were examined. All fatty acids were taken up but incorporation of saturated acids varied inversely with chain length. Arachidic acid and trans-isomers of 18:1 and 18:2 were esterified primarily to triacylglycerol whereas phospholipids contained a large portion of the other acids. Icosatrienoic and arachidonic acids were esterified to ethanolamine, serine and inositol phosphoglycerides to a comparatively greater extent, reflecting the normal distribution of these fatty acids. PMN leukocytes had a low capacity for Δ9 desaturation and chain elongation and no Δ6 or Δ5 desaturation could be detected. Thus, PMN leukocytes lack the ability to form arachidonate from 18:2 precursor molecules available in the cellular neutral lipids and phospholipids and arachidonate per se is an essential fatty acid for these cells.  相似文献   

13.
The effect of methanol on the ability of elicited rat peritoneal leukocytes to metabolise endogenous and exogenous arachidonic acid was studied using 2H8-arachidonic acid as the source of exogenous arachidonic acid and calcium ionophore A23187 as the lipoxygenase stimulus. As the methanol concentration increased from 0 to 992 mM there was a slight decrease in the total amount of LTB4 and related compounds formed, however examination of the ratio of undeuterated to deuterated LTB4 formed revealed that as the methanol concentration increased fro 0 to 992 mM, the percentage of undeuterated LTB4 present decreased significantly from 57 ± 9% to 2 ± 1 %. Methanol interfers with the ability of these cells to utilise endogenous arachidonic acid even in the presence of the powerful stimulus calcium ionophore A23187 thus allowing the facile biosynthesis of a range of deuterium labelled arachidonic acid metabolites.  相似文献   

14.
A new metabolite of arachidonic acid, 5-D-(S),12-D-(R)-dihydroxy-6,8,10,14-eicosatetraenoic acid, was found upon incubation of the fatty acid with a suspension of rabbit peritoneal polymorphonuclear leukocytes collected 4 h after injection of glycogen into the peritoneal cavity. The yield of the dihydroxy acid was 0.5 to 2%. The compound possesses three conjugated double bonds and was found to be stereochemically pure at C-5 and C-12. Incubation of the cells with 8,11,14-eicosatrienoic acid did not lead to the formation of the analogous triunsaturated dihydroxy acid.  相似文献   

15.
Incubation of bovine polymorphonuclear leukocytes (PMNs) with arachidonic acid leads to the formation of four lipoxins. The same lipoxins are also formed upon incubation of bovine PMNs with 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5(S)-hydroperoxy, 15(S)-hydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid or 5(S),15(S)-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid. A 5,6-epoxide as intermediate in lipoxin formation in the bovine PMN is highly improbable because the 5-hydroxy compounds are as good substrates as the 5-hydroperoxy compounds. Moreover, the two main lipoxins were found to coelute with the two lipoxins produced via a triple dioxygenation of arachidonic acid by soybean lipoxygenase-1. Hence the bovine PMN is the first cell for which evidence is presented that the formation of lipoxins proceeds mainly via triple dioxygenation and not via 15-hydroxy-leukotriene A4 as is proposed for human and porcine PMNs.  相似文献   

16.
The effects of alcohols on the formation of leukotrienes, 5-HETE prostagladin D2 In mastocytoma cells and human neutrophils were studied. In murine mastocytoma cells, alcohols appear to have at two-different effects on the production of these arachidonic add metabolites. At low levels of cellular arachidonic acid achieved after stimulation with calcium ionophore A23187 or addition of low levels of exogenous arachidonic acid, alcohols appear to have a general inhibitory effect on the production of lipoxygenase metabolites. In the presence of higher concentrations of cellular arachidonic acid, ethanol methanol stimulated the production of lipoxygenase metabolites, but had no stimulatory effect on the cyclo-oxygenase metabolite, prostaglandin D2. Under conditions,n-propanol t-butanol have inhibitory effects on leukotriene production. Human neutrophils are less sensitive to ethanol than mastocytoma cells, but stimulatory effects were still found at high ethanol concentrations (220–430 mM),  相似文献   

17.
Products of the 5-lipoxygenase pathway were analyzed after different stimuli in human polymorphonuclear leukocytes prelabeled with 3H-arachidonic acid. Upon stimulation with the Ca2+ ionophore, A23187, polymorphonuclear leukocytes generate 118.2 +/- 18 pg [3H]dihydroxyeicosatetraenoic acids (diHETEs, including 3H-leukotriene B4 and its 6-trans-stereoisomers), after exposure to serum coated zymosan (35.8 +/- 9 pg) and N-fMet-Leu-Phe (39.5 +/- 9 pg). Conversion of 3H-arachidonic acid paralleled its release after A23187 and fMet-Leu-Phe exposure leaving only 13.8 +/- 7% and 13.6 +/- 3% of the released 3H-arachidonic acid unmetabolized, respectively. In contrast, after stimulation with serum-coated zymosan only a small fraction of the released 3H-arachidonate was converted to 5-lipoxygenase products leaving 73.0 +/- 5% of the released 3H-arachidonic acid unmetabolized. In parallel, leukotriene B4 synthesis was studied in unlabeled polymorphonuclear leukocytes, resulting in 40 +/- 15 ng upon A23187 stimulation, 4 +/- 0.9 ng upon stimulation with fMet-Leu-Phe and 1.8 +/- 0.9 ng after serum-coated zymosan, showing a different ratio of leukotriene B4 to 3H-diHETE for A23187 in contrast to serum-coated zymosan and fMet-Leu-Phe. These results indicate that the coupling between the release of the precursor fatty acid and the metabolism via the 5-lipoxygenase pathway differs greatly between different stimuli.  相似文献   

18.
Chronic administration of mood stabilizers to rats down‐regulates the brain arachidonic acid (AA) cascade. This down‐regulation may explain their efficacy against bipolar disorder (BD), in which brain AA cascade markers are elevated. The atypical antipsychotics, olanzapine (OLZ) and clozapine (CLZ), also act against BD. When given to rats, both reduce brain cyclooxygenase activity and prostaglandin E2 concentration; OLZ also reduces rat plasma unesterified and esterified AA concentrations, and AA incorporation and turnover in brain phospholipid. To test whether CLZ produces similar changes, we used our in vivo fatty acid method in rats given 10 mg/kg/day i.p. CLZ, or vehicle, for 30 days; or 1 day after CLZ washout. [1‐14C]AA was infused intravenously for 5 min, arterial plasma was collected and high‐energy microwaved brain was analyzed. CLZ increased incorporation coefficients and rates Jin,i of plasma unesterified AA into brain phospholipids i, while decreasing plasma unesterified but not esterified AA. These effects disappeared after washout. Thus, CLZ and OLZ similarly down‐regulated kinetics and cyclooxygenase expression of the brain AA cascade, likely by reducing plasma unesterified AA availability. Atypical antipsychotics and mood stabilizers may be therapeutic in BD by down‐regulating, indirectly or directly respectively, the elevated brain AA cascade of that disease.  相似文献   

19.
The effects of various coumarins (i.e. esculetin, daphnetin and fraxetin) on the formation of the 5-lipoxygenase product, 5-HETE, and the cyclooxygenase product, HHT, were studied. Esculetin (6,7-dihydroxycoumarin) was found to inhibit the formation of 5-HETE more strongly than HHT; its concentrations for 50% inhibition (IC50) were 1.46 +/- 1.02 microM for the formation 5-HETE and 57.3 +/- 17.3 microM for the formation of HHT. Daphnetin (7,8-dihydroxycoumarin) and fraxetin (6-methoxy-7,8-dihydroxycoumarin) also inhibited the formation of the 5-lipoxygenase product, 5-HETE, and the cyclooxygenase product, HHT; their IC50 values were, respectively, 6.90 +/- 2.07 microM and 2.57 +/- 0.088 microM for the formation of 5-HETE and 139.0 +/- 30.0 microM and 532.5 +/- 33.0 microM for the formation of HHT. The monohydroxy coumarin derivatives umbelliferone (7-hydroxycoumarin) and scopoletin (6-methoxy-7-hydroxycoumarin) and the coumarin glucosides fraxin (6-methoxy-7,8-dihydroxycoumarin 8-O-D-glucoside) and esculin (6,7-dihydroxycoumarin 6-O-D-glucoside) also inhibited the formation of 5-HETE, though less strongly. 4-Hydroxycoumarin and coumarin had no effect on either 5-lipoxygenase or cyclooxygenase at concentrations of up to 1 mM. Esculetin inhibited the formation of 5-HETE noncompetitively. In contrast, the dimethoxycoumarin fraxidin (6,8-dimethoxy-7-hydroxycoumarin) inhibited the formation of HHT more strongly than the formation of 5-HETE at a concentration of 1 mM.  相似文献   

20.
The titration of metal-freed bovine α-lactalbumin with Mg2+ ions causes a two-stepped decrease in the tryptophan fluorescence quantum yield and a pronounced spectral shift towards shorter wavelengths, which seems to be a result of the binding of two magnesium ions to the protein molecule. The magnesium binding constants evaluated from the fluorimetric Mg2+-titration are 2·103 and 2·102 M?1. Mg2+ ions in millimolar concentrations almost do not influence the binding of Ca2+ ions to the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号