首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The synthesis of a backbone bicyclic nonapeptide that mimics the binding site of bovine pancreatic trypsin inhibitor (BPTI) is described. The BPTI mimetic, which containscis-thioproline replacing Cys38 of the protein, inhibits trypsin with a K i of 76 μM.  相似文献   

2.
The semisynthesis of homologues of aprotinin, the bovine pancreatic trypsin inhibitor, is described. The P1 lysine15 residue was replaced by two methods. The first procedure, which consisted of two enzymatic steps for the incorporation of other amino acids has previously been described. The second approach consisted of six steps of both enzymatic and chemical nature. The modified inhibitor, in which the lysine15-alanine16 peptide bond is hydrolyzed, was used as the starting material. All carboxyl groups of the modified inhibitor were esterified with methanol; the lysine15 methylester group was then selectively hydrolyzed. Afterward, lysine15 itself was split off. Arginine, glutamic acid, methionine, andl-2-aminohexanoic acid (norleucine, Nle) were incorporated using water-soluble carbodiimide combined with an acylation catalyst. The methylester group was used to prevent polymerization. The reactive-site peptide bonds were resynthesized using either chymotrypsin or trypsin.  相似文献   

3.
The changes of H-D exchange rates upon protein-protein interactions are generally interpreted as a result of the changes of the dynamic properties of the proteins. The effect of trypsin binding on the H-D exchange kinetics of some trypsin inhibitor amide H's was reported (Simon et al., 1984). In this paper the electrostatic potential originating from the trypsin molecule is calculated at the positions of the studied amide H's in the trypsin-trypsin inhibitor complex. We conclude that the observed decrease of the exchange rates is mainly due to the electrostatic field of the trypsin molecule.  相似文献   

4.
The kinetics of disulfide-coupled folding and unfolding of four circularly permuted forms of bovine pancreatic trypsin inhibitor (BPTI) were studied and compared with previously published results for both wild-type BPTI and a cyclized form. Each of the permuted proteins was found to be less stable than either the wild-type or circular proteins, by 3-8 kcal/mole. These stability differences were used to estimate effective concentrations of the chain termini in the native proteins, which were 1 mM for the wild-type protein and 2.5 to 4000 M for the permuted forms. The circular permutations increased the rates of unfolding and caused a variety of effects on the kinetics of refolding. For two of the proteins, the rates of a direct disulfide-formation pathway were dramatically increased, making this process as fast or faster than the competing disulfide rearrangement mechanism that predominates in the folding of the wild-type protein. These two permutations break the covalent connectivity among the beta-strands of the native protein, and removal of these constraints appears to facilitate direct formation and reduction of nearby disulfides that are buried in the folded structure. The effects on folding kinetics and mechanism do not appear to be correlated with relative contact order, a measure of overall topological complexity. These observations are consistent with the results of other recent experimental and computational studies suggesting that circular permutation may generally influence folding mechanisms by favoring or disfavoring specific interactions that promote alternative pathways, rather than through effects on the overall topology of the native protein.  相似文献   

5.
The bovine chymotrypsin-bovine pancreatic trypsin inhibitor (BPTI) interaction belongs to extensively studied models of protein-protein recognition. The accommodation of the inhibitor P1 residue in the S1 binding site of the enzyme forms the hot spot of this interaction. Mutations introduced at the P1 position of BPTI result in a more than five orders of magnitude difference of the association constant values with the protease. To elucidate the structural aspects of the discrimination between different P1 residues, crystal structures of five bovine chymotrypsin-P1 BPTI variant complexes have been determined at pH 7.8 to a resolution below 2 A. The set includes polar (Thr), ionizable (Glu, His), medium-sized aliphatic (Met) and large aromatic (Trp) P1 residues and complements our earlier studies of the interaction of different P1 side-chains with the S1 pocket of chymotrypsin. The structures have been compared to the complexes of proteases with similar and dissimilar P1 preferences, including Streptomyces griseus proteases B and E, human neutrophil elastase, crab collagenase, bovine trypsin and human thrombin. The S1 sites of these enzymes share a common general shape of significant rigidity. Large and branched P1 residues adapt in their complexes similar conformations regardless of the polarity and size differences between their S1 pockets. Conversely, long and flexible residues such as P1 Met are present in the disordered form and display a conformational diversity despite similar inhibitory properties with respect to most enzymes studied. Thus, the S1 specificity profiles of the serine proteases appear to result from the precise complementarity of the P1-S1 interface and minor conformational adjustments occurring upon the inhibitor binding.  相似文献   

6.
Homonyms, synonyms and mutations of the sequence/structure vocabulary   总被引:3,自引:0,他引:3  
The effect of pH and temperature on the association equilibrium constant (Ka) for bovine basic pancreatic trypsin inhibitor (BPTI, Kunitz inhibitor) binding to human urinary kallikrein and porcine pancreatic beta-kallikreins A and B has been investigated. Ka values decrease with decreasing pH, reflecting the acid-midpoint and pK shifts, upon BPTI binding, of a three-proton co-operative transition, between pH 3 and 5, and of a single ionizable group, between pH 5 and 9. At pH 8, the values of delta H degree (between 7 degrees C and 42 degrees C) and delta S degree (at 21 degrees C) for BPTI binding to the glandular kallikreins considered were determined. In particular, the delta H degree values have been found to be independent of temperature and the following values have been obtained by van't Hoff plots: +1.8 kcal/mol, +2.3 kcal/mol and +2.4 kcal/mol (1 kcal = 4184 J) for the inhibitor binding to human urinary kallikrein and porcine pancreatic beta-kallikreins A and B, respectively. Considering the known molecular structures of free porcine pancreatic beta-kallikrein A and BPTI, and of their complex, the stereochemistry of the enzyme : inhibitor contact regions was analysed for the three serine proteinases, in relation to their respective types of behaviour.  相似文献   

7.
Here we determined NMR solution structures of two mutants of bovine pancreatic trypsin inhibitor (BPTI) to reveal structural reasons of their decreased thermodynamic stability. A point mutation, A16V, in the solvent-exposed loop destabilizes the protein by 20 degrees C, in contrast to marginal destabilization observed for G, S, R, L or W mutants. In the second mutant introduction of eight alanine residues at proteinase-contacting sites (residues 11, 13, 17, 18, 19, 34, 37 and 39) provides a protein that denatures at a temperature about 30 degrees C higher than expected from additive behavior of individual mutations. In order to efficiently determine structures of these variants, we applied a procedure that allows us to share data between regions unaffected by mutation(s). NOAH/DYANA and CNS programs were used for a rapid assignment of NOESY cross-peaks, structure calculations and refinement. The solution structure of the A16V mutant reveals no conformational change within the molecule, but shows close contacts between V16, I18 and G36/G37. Thus, the observed 4.3kcal/mol decrease of stability results from a strained local conformation of these residues caused by introduction of a beta-branched Val side-chain. Contrary to the A16V mutation, introduction of eight alanine residues produces significant conformational changes, manifested in over a 9A shift of the Y35 side-chain. This structural rearrangement provides about 6kcal/mol non-additive stabilization energy, compared to the mutant in which G37 and R39 are not mutated to alanine residues.  相似文献   

8.
Recent studies of the refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) have shown that a previously unidentified intermediate with a single disulfide is formed much more rapidly than any other one-disulfide species. This intermediate contains a disulfide that is present in the native protein (between Cys14 and 38), but it is thermodynamically less stable than the other two intermediates with single native disulfides. To characterize the role of the [14-38] intermediate and the factors that favor its formation, detailed kinetic and mutational analyses of the early disulfide-formation steps were carried out. The results of these studies indicate that the formation of [14-38] from the fully reduced protein is favored by both local electrostatic effects, which enhance the reactivities of the Cys14 and 38 thiols, and conformational tendencies that are diminished by the addition of urea and are enhanced at lower temperatures. At 25 degrees C and pH 7.3, approximately 35% of the reduced molecules were found to initially form the 14-38 disulfide, but the majority of these molecules then undergo intramolecular rearrangements to generate non-native disulfides, and subsequently the more stable intermediates with native disulfides. Amino acid replacements, other than those involving Cys residues, were generally found to have only small effects on either the rate of forming [14-38] or its thermodynamic stability, even though many of the same substitutions greatly destabilized the native protein and other disulfide-bonded intermediates. In addition, those replacements that did decrease the steady-state concentration of [14-38] did not adversely affect further folding and disulfide formation. These results suggest that the weak and transient interactions that are often detected in unfolded proteins and early folding intermediates may, in some cases, not persist or promote subsequent folding steps.  相似文献   

9.
Covalently linked pairs of well-chosen peptides can be good model systems for protein folding studies because they can adopt stable secondary, side-chain, and tertiary structure under certain conditions. We demonstrate a method for characterizing the structure in such peptide pairs by hydrogen/deuterium exchange of individual amide groups analyzed by collision-induced dissociation tandem mass spectrometry, in concert with circular dichroism spectroscopy. We apply the method to two peptides (and their three possible pairs) from bovine pancreatic trypsin inhibitor to address specific hypotheses regarding the stabilization of local secondary structure by long-range interactions.  相似文献   

10.
The effects of negatively charged phosphatidylserine-prepared membranes (PS) and neutral phosphatidylcholine-prepared membranes (PC) on the structure of wild-type and mutant bovine pancreatic trypsin inhibitor (BPTI) at neutral pH were investigated. The presence of PC did not have any effect on the protein structure while PS induced a non-native structure in three mutant BPTI proteins. However, the negatively charged membrane did not have any effect on wild-type BPTI. The findings revealed that (i) elimination of some disulphide bonds results in dramatic change in protein structure, and, (ii) that this biochemical interaction is surface-driven and electrostatic interactions may play a very strong role in influencing the fore-stated changes in protein structure. Of further interest were the results obtained from investigating the possible role of PS fluidity and concentration in altering mutant. When the value of Gibbs free-energy change of unfolding (DeltaG(U)) was positive, various non-native structures were formed in a concentration-dependent manner. However, when the value of DeltaG(U) was negative, only two types of non-native structures were formed: one with high beta structure content at low PS fluidity state, and the other with a high alpha-helical content at high PS fluidity state. Our study reveals how particular combinations of phospholipid:protein interactions can induce a protein conformation transition from a native to a non-native one at neutral pH, especially when the native structure is predestabilized by amino acid substitutions. This revelation may open up opportunities to explore alternative ways in which phospholipids may play a role in protein mis-folding and the related pathologies.  相似文献   

11.
The Tyr35-->Gly replacement in bovine pancreatic trypsin inhibitor (BPTI) has previously been shown to dramatically enhance the flexibility of the trypsin-binding region of the free inhibitor and to destabilize the interaction with the protease by about 3 kcal/mol. The effects of this replacement on the enzyme-inhibitor interaction were further studied here by X-ray crystallography and isothermal titration calorimetry (ITC). The co-crystal structure of Y35G BPTI bound to trypsin was determined using 1.65 A resolution X-ray diffraction data collected from cryopreserved crystals, and a new structure of the complex with wild-type BPTI under the same conditions was determined using 1.62 A data. These structures reveal that, in contrast to the free protein, Y35G BPTI adopts a conformation nearly identical with that of the wild-type protein, with a water-filled cavity in place of the missing Tyr side-chain. The crystallographic temperature factors for the two complexes indicate that the mutant inhibitor is nearly as rigid as the wild-type protein when bound to trypsin. Calorimetric measurements show that the change in enthalpy upon dissociation of the complex is 2.5 kcal/mol less favorable for the complex containing Y35G BPTI than for the complex with the wild-type inhibitor. Thus, the destabilization of the complex resulting from the Y35G replacement is due to a more favorable change in entropy upon dissociation. The heat capacity changes for dissociation of the mutant and wild-type complexes were very similar, suggesting that the entropic effects probably do not arise from solvation effects, but are more likely due to an increase in protein conformational entropy upon dissociation of the mutant inhibitor. These results define the biophysical role of a highly conserved core residue located outside of a protein-binding interface, demonstrating that Tyr35 has little impact on the trypsin-bound BPTI structure and acts primarily to define the structure of the free protein so as to maximize binding affinity.  相似文献   

12.
A new procedure for the graphic analysis of molecular dynamics (MD) simulations on proteins is introduced, in which comprehensive visualization of results and pattern recognition is greatly facilitated. The method involves determining the conformational and helicoidal parameters for each structure entering the analysis via the method "Curves," developed for proteins by Sklenar, Etchebest, and Lavery (Proteins: Structure, Function Genet. 6:46-60, 1989) followed by a novel computer graphic display of the results. The graphic display is organized systematically using conformation wheels ("dials") for each torsional parameter and "windows" on the range values assumed by the linear and angular helicoidal parameters, and is present in a form isomorphous with the primary structure per se. The complete time evolution of dynamic structure can then be depicted in a set of four composite figures. Dynamic aspects of secondary and tertiary structure are also provided. The procedure is illustrated with an analysis of a 50 psec in vacuo simulation on the 58 residue protein, bovine pancreatic trypsin inhibitor (BPTI), in the vicinity of the local minimum on the energy surface corresponding to a high resolution crystal structure. The time evolution of 272 conformational and 788 helicoidal parameters for BPTI is analyzed. A number of interesting features can be discerned in the analysis, including the dynamic range of conformational and helicoidal motions, the dynamic extent of 2 degrees structure motifs, and the calculated fluctuations in the helix axis. This approach is expected to be useful for a critical analysis of the effects of various assumptions about force field parameters, truncation of potentials, solvation, and electrostatic effects, and can thus contribute to the development of more reliable simulation protocols for proteins. Extensions of the analysis to present differential changes in conformational and helicoidal parameters is expected to be valuable in MD studies of protein complexes with substrates, inhibitors, and effectors and in determining the nature of structural changes in protein-protein interactions.  相似文献   

13.
Protein disulfide isomerase (PDI) plays a central role in disulfide bond formation in the endoplasmic reticulum. It is implicated both in disulfide bond formation and in disulfide bond reduction and isomerization. To be an efficient catalyst of all three reactions requires complex mechanisms. These include mechanisms to modulate the pKa values of the active-site cysteines of PDI. Here, we examined the role of arginine 120 in modulating the pKa values of these cysteines. We find that arginine 120 plays a significant role in modulating the pKa of the C-terminal active-site cysteine in the a domain of PDI and plays a role in determining the reactivity of the N-terminal active-site cysteine but not via direct modulation of its pKa. Mutation of arginine 120 and the corresponding residue, arginine 461, in the a′ domain severely reduces the ability of PDI to catalyze disulfide bond formation and reduction but enhances the ability to catalyze disulfide bond isomerization due to the formation of more stable PDI-substrate mixed disulfides. These results suggest that the modulation of pKa of the C-terminal active cysteine by the movement of the side chain of these arginine residues into the active-site locales has evolved to allow PDI to efficiently catalyze both oxidation and isomerization reactions.  相似文献   

14.
The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (K d, 16.5 nM) and BPTI (K d, 1,490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (K d, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (K d, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (K d, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (K d, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (K d, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand–ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.  相似文献   

15.
One of the frontiers today in molecular biology is to measure, identify and go further to predict the low-frequency internal motion of biological macromolecules, which is crucially important for understanding the dynamic mechanism of various biological functions occurring in such molecules. Based on the theory of continuity model developed recently for dealing with the internal low-frequency motion of a biological macromolecule, it is predicted that the low-frequency phonons with wave number of about 23 cm?1 might be excited in BPTI molecule.  相似文献   

16.
Protein-protein and protein-peptide interactions are often controlled by few strong contacts that involve hot spot residues. Computational detection of such contacts, termed here anchoring spots, is important for understanding recognition processes and for predicting interactions; it is an essential step in designing interaction interfaces and therapeutic agents. We describe ANCHORSMAP, an algorithm for computational mapping of amino acid side chains on protein surfaces. The algorithm consists of two stages: A geometry based stage (LSMdet), in which sub-pockets adequate for binding single side chains are detected and amino acid probes are scattered near them, and an energy based stage in which optimal positions of the probes are determined through repeated energy minimization and clustering of nearby poses and their ΔG are calculated. ANCHORSMAP employs a new function for ΔG calculations, which is specifically designed for the context of protein-protein recognition by introducing a correction in the electrostatic energy term that compensates for the dielectric shielding exerted by a hypothetical protein bound to the probe.The algorithm successfully detects known anchoring sites and accurately positions the probes. The calculated ΔG rank high the correct anchoring spots in maps produced for unbound proteins. We find that Arg, Trp, Glu and Tyr, which are favorite hot spot residues, are also more selective of their binding environment. The usefulness of anchoring spots mapping is demonstrated by detecting the binding surfaces in the protein-protein complex barnase/barstar and the protein-peptide complex kinase/PKI, and by identifying phenylalanine anchoring sites on the surface of the nuclear transporter NTF2, C-terminus anchors on PDZ domains and phenol anchors on thermolysin. Finally, we discuss the role of anchoring spots in molecular recognition processes.  相似文献   

17.
Human erythrocytes are able to incorporate cyclic AMP (cAMP) in amounts larger than those required to saturate cAMP-dependent protein kinase. In contrast to previous observations in avian red blood cells in which cAMP stimulates the Na+/K+ cotransport system, we demonstrate that cAMP inhibits this system in human erythrocytes. The cotransport inhibition is enhanced by addition of phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine to the incubation medium. The cAMP concentration giving half-maximal cotransport inhibition showed a wide variation among different individuals (from 0.1 to 5 mM external cAMP concentration). In contrast to cAMP, cyclic GMP showed little effect on the cotransport system. Ca2+ introduced into the cell interior was an inhibitor of the Na+/K+ cotransport system. These results suggest that in human cells in which endogeneous levels of cAMP and Ca2+ are modulated by hormones, the Na+/K+ cotransport system may be under hormonal regulation.  相似文献   

18.
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 Å resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by β-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the ”Kunitz head” by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a β-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.  相似文献   

19.
The rotational freedom of tryptophan residues in protein-ligand complexes was studied by measuring steady-state fluorescence anisotropies under conditions of oxygen quenching. There was a decrease in the oxygen bimolecular quenching constant upon complexation of trypsin and alpha-chymotrypsin with proteinaceous trypsin inhibitors, of lysozyme with N-acetylglucosamine (NAG) and di(N-acetyl-D-glucosamine) ((NAG)2) and of hexokinase with glucose. Binding of the bisubstrate analogue N-phosphonacetyl-L-aspartate (PALA) to aspartate transcarbamylase (ATCase) and binding of biotin to avidin resulted in increased oxygen quenching constants. The tryptophan of human serum albumin (HSA) in the F state was more accessible to oxygen quenching than that in the N state. With the exception of ATCase, the presence of subnanosecond motions of the tryptophan residues in all the proteins is suggested by the short apparent correlation times for fluorescence depolarization and by the low apparent anisotropies obtained by extrapolation to a lifetime of zero. Complex formation evidently resulted in more rigid structures in the case of trypsin, alpha-chymotrypsin and lysozyme. The effects of glucose binding on hexokinase were not significant. Binding of biotin to avidin resulted in a shorter correlation time for the tryptophan residues. The N --> F transition in HSA resulted in a more rigid environment for the tryptophan residue. Overall, these changes in the dynamics of the protein matrix and motional freedom of tryptophan residues due to complex formation and subsequent conformational changes are in the same direction as those observed by other techniques, especially hydrogen exchange. Significantly, the effects of complex formation on protein dynamics are variable. Among the limited number of cases we examined, the effects of complex formation were to increase, decrease or leave unchanged the apparent dynamics of the protein matrix.  相似文献   

20.
Summary Nuclear Overhauser effect (NOE) measurements on molecules in solution provide information about only the ensemble-averaged properties of these molecules. An algorithm is presented that uses a list of NOEs to produce an ensemble of molecules that on average agrees with these NOEs, taking into account the effect of surrounding spins on the buildup of each NOE (spin diffusion). A simplified molecular dynamics simulation on several copies of the molecule in parallel is restrained by forces that are derived directly from differences between calculated and measured NOEs. The algorithm is tested on experimental NOE data of a helical peptide derived from bovine pancreatic trypsin inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号